【題目】在直角坐標系中,曲線C的參數(shù)方程為(為參數(shù)),曲線上異于原點的兩點所對應的參數(shù)分別為.以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)當時,直線平分曲線,求的值;

2)當時,若,直線被曲線截得的弦長為,求直線的方程.

【答案】12

【解析】

1)求出直線的方程和曲線的直角坐標方程,然后利用直線過點求出答案;

2)由可算出,然后可設直線的方程為,然后根據(jù)直線被曲線截得的弦長為建立方程求解即可.

1)因為,所以.

所以直線的方程為.

曲線的方程可化為

因為直線平分曲線,所以直線過點,

所以.

2)由題意可知

曲線的方程為

設直線的方程為,圓心到直線的距離為

因為,所以

所以,

所以直線的方程為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求函數(shù)的極值;

2)若對于任意實數(shù),當時,函數(shù)的最大值為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù).

(Ⅰ)判斷函數(shù)的單調性;

(Ⅱ)若時,對任意,不等式恒成立,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),若存在區(qū)間,使得上的值域為,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】地球的公轉軌道可以看作是以太陽為一個焦點的橢圓,根據(jù)開普勒行星運動第二定律,可知太陽和地球的連線在相等的時間內掃過相等的面積,某同學結合物理和地理知識得到以下結論:①地球到太陽的距離取得最小值和最大值時,地球分別位于圖中點和點;②已知地球公轉軌道的長半軸長約為千米,短半軸長約為千米,則該橢圓的離心率約為.因此該橢圓近似于圓形:③已知我國每逢春分(日前后)和秋分(日前后),地球會分別運行至圖中點和點,則由此可知我國每年的夏半年(春分至秋分)比冬半年(當年秋分至次年春分)要少幾天.以上結論正確的是(

A.B.①②C.②③D.①③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,則方程所有根的和等于(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】斐波那契數(shù)列滿足: .若將數(shù)列的每一項按照下圖方法放進格子里,每一小格子的邊長為1,記前項所占的格子的面積之和為,每段螺旋線與其所在的正方形所圍成的扇形面積為,則下列結論錯誤的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C的參數(shù)方程為at為參數(shù)).O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcosθsinθ)=1.

1)當t為參數(shù),α時,判斷曲線C與直線l的位置關系;

2)當α為參數(shù),t2時,直線l與曲線C交于A,B兩點,設P1,0),求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著生活節(jié)奏的加快以及智能手機的普及,外賣點餐逐漸成為越來越多用戶的餐飲消費習慣,由此催生了一批外賣點餐平臺.已知某外賣平臺的送餐費用與送餐距離有關(該平臺只給5千米范圍內配送),為調査送餐員的送餐收入,現(xiàn)從該平臺隨機抽取100名點外賣的用戶進行統(tǒng)計,按送餐距離分類統(tǒng)計結果如表:

送餐距離(千米)

0,1]

12]

2,3]

34]

4,5]

頻數(shù)

15

25

25

20

15

以這100名用戶送餐距離位于各區(qū)間的頻率代替送餐距離位于該區(qū)間的概率.

1)若某送餐員一天送餐的總距離為100千米,試估計該送餐員一天的送餐份數(shù);(四舍五入精確到整數(shù),且同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表).

2)若該外賣平臺給送餐員的送餐費用與送餐距離有關,規(guī)定2千米內為短距離,每份3元,2千米到4千米為中距離,每份7元,超過4千米為遠距離,每份12元.記X為送餐員送一份外賣的收入(單位:元),求X的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案