(本小題滿分14分)

如圖6所示,等腰三角形△ABC的底邊AB=,高CD=3.點E是線段BD上異于B、D的動點.點F在BC邊上,且EF⊥AB.現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE.

記BE=x,V(x)表示四棱錐P-ACFE的體積。

 (1)求V(x)的表達式;

 (2)當x為何值時,V(x)取得最大值?

 (3)當V(x)取得最大值時,求異面直線

AC與PF所成角的余弦值。

3(1-)(0<x<3)

x=6時, V(x)取得最大值V(x)max= V(6)=12 

 



解析:

(1)已知EFAB,那么翻折后,顯然有PEEF,又PEAE,    從而PE面ABC,即PE為四棱錐的高。

四棱錐的底面積S=-

而△BEF與△BDC相似,那么

===

則S=-=(1-63=9(1-

故四棱錐的體積V(x)=SH=9(1-=3(1-)(0<x<3)

(2) V’(x)= 3-x2(0<x<3)

令V’(x)=0得x=6

當x∈(0,6)時,V’(x)>0,V(x)單調遞增;x∈(6,3)時V’(x)><0,V(x)單調遞減;

因此x=6時, V(x)取得最大值V(x)max= V(6)=12 

     (3)過P作PQ∥AC交AB于點Q

那么△PQF中PF=FQ=,而PQ=6

進而求得cos∠PFQ=     

故異面直線AC與PF所成角的余弦值為    .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關于第天的函數(shù)關系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求,滿足的關系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案