已知(數(shù)學公式-數(shù)學公式n(n∈N*)的展開式中第5項的系數(shù)與第3項的系數(shù)的比是10:1,則展開式中含數(shù)學公式項是第


  1. A.
    一項
  2. B.
    二項
  3. C.
    四項
  4. D.
    六項
D
分析:利用的展開式的通項公式可求得第5項的系數(shù)與第3項的系數(shù),它們的比是10:1,可求得n,從而可求項是第幾項.
解答:∵=
∵第5項的系數(shù)與第3項的系數(shù)的比是10:1,
,解得:n=8;

∴由解得r=5.
故選D.
點評:本題考查二項式系數(shù)的性質,著重考查學生對二項展開式的通項公式的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線m,n互不重合,平面α,β互不重合,下列命題正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:n=
n(n+1)
2
-
(n-1)•n
2
,n•(n+1)=
n•(n+1)•(n+2)
3
-
(n-1)•n•(n+1)
3

由以上兩式,可以類比得到n(n+1)(n+2)=
n(n+1)(n+2)(n+3)
4
-
(n-1)•n•(n+1)(n+2)
4
n(n+1)(n+2)(n+3)
4
-
(n-1)•n•(n+1)(n+2)
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在各項均為負數(shù)的數(shù)列{an}中,已知點(an,an+1)(n∈N*)在函數(shù)y=
2
3
x
的圖象上,且a2a5=
8
27
.則數(shù)列{an}的通項公式為an=
-(
2
3
n-2
-(
2
3
n-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知an=logn+1(n+2)(n∈N*)我們把使乘積a1a2…an為整數(shù)的數(shù)n叫做“成功數(shù)”,則在區(qū)間(1,2011)內(nèi)的所有成功數(shù)的和為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•惠州模擬)已知點(1,
1
3
)是函數(shù)f(x)=ax(a>0,且a≠1)的圖象上一點,等比數(shù)列{an}的前n項和為f(n)-c,數(shù)列{bn}(bn>0)的首項為c,且前n項和Sn滿足:Sn-Sn-1=
Sn
+
Sn-1
(n≥2).
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若數(shù)列{cn}的通項cn=bn•(
1
3
)n
,求數(shù)列{cn}的前n項和Rn;
(3)若數(shù)列{
1
bnbn+1
}前n項和為Tn,問Tn
1000
2009
的最小正整數(shù)n是多少?

查看答案和解析>>

同步練習冊答案