【題目】已知集合A={x|﹣2≤x≤5},集合B={x|p+1≤x≤2p﹣1},若A∩B=B,求實(shí)數(shù)p的取值范圍.

【答案】解:根據(jù)題意,若A∩B=B,則BA;
分情況討論:①當(dāng)p+1>2p﹣1時(shí),即p<2時(shí),B=,此時(shí)BA,則A∩B=B,則p<2時(shí),符合題意;
②當(dāng)p+1=2p﹣1時(shí),即p=2時(shí),B={x|3≤x≤3}={3},此時(shí)BA,則A∩B=B,則p=2時(shí),符合題意;
③當(dāng)p+1<2p﹣1時(shí),即p>2時(shí),B={x|p+1≤x≤2p﹣1},
若BA,則有 ,解可得﹣3≤p≤3,
又由p>2,
則當(dāng)2<p≤3時(shí),符合題意;
綜合可得,當(dāng)p≤3時(shí),A∩B=B成立
【解析】根據(jù)題意,由集合的性質(zhì),可得若滿(mǎn)足A∩B=B,則BA,進(jìn)而分:①p+1>2p﹣1,②p+1=2p﹣1,③p+1<2p﹣1,三種情況討論,討論時(shí),先求出p的取值范圍,進(jìn)而可得B,討論集合B與A的關(guān)系可得這種情況下p的取值范圍,對(duì)三種情況下求得的p的范圍求并集可得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面,底面是直角梯形,,

,點(diǎn)上,且.

(1)已知點(diǎn),且,求證:平面平面

(2)若的面積是梯形面積為,求點(diǎn)E到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

1)求不等式的解集;

2)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩點(diǎn)A(2,3)、B(4,1),直線(xiàn)l:x+2y﹣2=0,在直線(xiàn)l上求一點(diǎn)P.
(1)使|PA|+|PB|最;
(2)使|PA|﹣|PB|最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:參數(shù)方程與極坐標(biāo)系

在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù), 為傾斜角),以坐標(biāo)原點(diǎn)O為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)的極坐標(biāo)方程為

1)求曲線(xiàn)的直角坐標(biāo)方程,并 C的焦點(diǎn)F的直角坐標(biāo);

2)已知點(diǎn),若直線(xiàn)C相交于A,B兩點(diǎn),且,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果執(zhí)行如圖的程序框圖,若輸入n=6,m=4,那么輸出的p等于(
A.720
B.360
C.240
D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)的定義域?yàn)閧x|x≠0},且滿(mǎn)足對(duì)于定義域內(nèi)任意的x1 , x2都有等式f(x1x2)=f(x1)+f(x2)成立.
(1)求f(1)的值.
(2)判斷f(x)的奇偶性并證明.
(3)若f(4)=1,且f(x)在(0,+∞)上是增函數(shù),解關(guān)于x的不等式f(3x+1)+f(﹣6)≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省高考改革新方案,不分文理科,高考成績(jī)實(shí)行“”的構(gòu)成模式,第一個(gè)“3”是語(yǔ)文、數(shù)學(xué)、外語(yǔ),每門(mén)滿(mǎn)分150分,第二個(gè)“3”由考生在思想政治、歷史、地理、物理、化學(xué)、生物6個(gè)科目中自主選擇其中3個(gè)科目參加等級(jí)性考試,每門(mén)滿(mǎn)分100分,高考錄取成績(jī)卷面總分滿(mǎn)分750分.為了調(diào)查學(xué)生對(duì)物理、化學(xué)、生物的選考情況,將“某市某一屆學(xué)生在物理、化學(xué)、生物三個(gè)科目中至少選考一科的學(xué)生”記作學(xué)生群體,從學(xué)生群體中隨機(jī)抽取了50名學(xué)生進(jìn)行調(diào)查,他們選考物理,化學(xué),生物的科目數(shù)及人數(shù)統(tǒng)計(jì)如下表:

(I)從所調(diào)查的50名學(xué)生中任選2名,求他們選考物理、化學(xué)、生物科目數(shù)量不相等的概率;

(II)從所調(diào)查的50名學(xué)生中任選2名,記表示這2名學(xué)生選考物理、化學(xué)、生物的科目數(shù)量之差的絕對(duì)值,求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(III)將頻率視為概率,現(xiàn)從學(xué)生群體中隨機(jī)抽取4名學(xué)生,記其中恰好選考物理、化學(xué)、生物中的兩科目的學(xué)生數(shù)記作,求事件“”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,底面為平行四邊形, , , , 點(diǎn)在底面內(nèi)的射影在線(xiàn)段上,且, ,M在線(xiàn)段上,且

(Ⅰ)證明: 平面;

(Ⅱ)在線(xiàn)段AD上確定一點(diǎn)F,使得平面平面PAB,并求三棱錐的體積

查看答案和解析>>

同步練習(xí)冊(cè)答案