4.給出下列三個(gè)命題
①離散型隨機(jī)變量X~B(4,0.1),則D(X)=0.36;
②將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都減去同一個(gè)非零數(shù)后,則平均值與方差均沒有變化;
③采用系統(tǒng)抽樣法從某班按學(xué)號抽取5名同學(xué)參加活動(dòng),學(xué)號為5,16,27,38,49的同學(xué)均被選出,則該班學(xué)生人數(shù)可能為60.
其中正確的命題的個(gè)數(shù)為(  )
A.0B.1C.2D.3

分析 ①根據(jù)二項(xiàng)分布的方差公式進(jìn)行計(jì)算即可.
②根據(jù)平均值和方差的定義和性質(zhì)進(jìn)行判斷.
③利用系統(tǒng)抽樣的定義進(jìn)行求解判斷.

解答 解:①∵X~B(4,0.1),
∴D(X)=4×0.1×0.9=0.36;故①正確,
②將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都減去同一個(gè)非零數(shù)后,則平均值發(fā)生變化,但方差均沒有變化,故②錯(cuò)誤,
③樣本間隔為16-5=11,則對應(yīng)的人數(shù)可能為11×5=55人,故③錯(cuò)誤.
故選:B

點(diǎn)評 本題主要考查命題的真假判斷,涉及知識點(diǎn)較多,綜合性較強(qiáng),難度不大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)函數(shù)f(1-$\frac{1-x}{1+x}$)=x.則f(x)的表達(dá)式為f(x)=$\frac{x}{2-x}$,(t≠2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.類比“兩角和與差的正弦公式”的形式,對于給定的兩個(gè)函數(shù):S(x)=ax-a-x,C(x)=ax+a-x,其中a>0,且a≠1,下面正確的運(yùn)算公式是③④
①S(x+y)=S(x)C(y)+C(x)S(y);
②S(x-y)=S(x)C(y)-C(x)S(y);
③2S(x+y)=S(x)C(y)+C(x)S(y);
④2S(x-y)=S(x)C(y)-C(x)S(y).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知三點(diǎn)A(1,0),B(0,$\sqrt{3}$),C(2,$\sqrt{3}$),求△ABC外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.甲、乙兩人進(jìn)行射擊比賽,在一輪比賽中,甲、乙各射擊一次,根據(jù)以往資料知,甲擊中8環(huán)、9環(huán)、10環(huán)的概率分別為0.6,0.3,0.1,乙擊中8環(huán)、9環(huán)、10環(huán)的概率分別為0.4,0.4,0.2.設(shè)甲、乙的射擊相互獨(dú)立.求在一輪比賽中甲擊中的環(huán)數(shù)多于乙擊中的環(huán)數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.角A是△ABC的一個(gè)內(nèi)角,若函數(shù)y=cos(2x+A)的圖象的一個(gè)對稱中心為($\frac{π}{3}$,0),則A=$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知A(1,2),B(a,4),向量$\overrightarrow m$=(2,1),若$\overrightarrow{AB}$∥$\overrightarrow m$,則a的值為( 。
A.5B.3C.-2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知平面向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(2x+3,-x)(x∈R).若$\overrightarrow{a}$與$\overrightarrow$夾角的銳角,求x的取值范圍是(-1,0)∪(0,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知1,x1,x2,7成等差數(shù)列,1,y1,y2,8成等比數(shù)列,點(diǎn)M(x1,y1)N(x2,y2),則直線MN的方程是( 。
A.x-y+1=0B.x-y-1=0C.x-y-7=0D.x+y-7=0

查看答案和解析>>

同步練習(xí)冊答案