分析:利用等差數(shù)列的性質(zhì)得到S4,S8-S4,S12-S8,S16-S12構(gòu)成等差數(shù)列,把公差用S4表示后,再借助于等差數(shù)列的通項(xiàng)公式把S8,S16都用S4表示,則答案可求.
解答:解:∵數(shù)列{a
n}是等差數(shù)列,由等差數(shù)列的性質(zhì)得,
S
4,S
8-S
4,S
12-S
8,S
16-S
12構(gòu)成等差數(shù)列,
再由已知
=
,∴S
8=6S
4,∴S
8-S
4=6S
4-S
4=5S
4.
則數(shù)列S
4,S
8-S
4,S
12-S
8,S
16-S
12的公差為5S
4-S
4=4S
4.
∴S
12-S
8=S
4+2×4S
4=9S
4,得S
12=S
8+9S
4=6S
4+9S
4=15S
4.
S
16-S
12=S
4+3×4S
4=13S
4,得S
16=S
12+13S
4=15S
4+13S
4=28S
4.
∴則
=
=.
故選:C.
點(diǎn)評(píng):本題考查了等差數(shù)列的性質(zhì),若數(shù)列{an}是等差數(shù)列,則其第一個(gè)k項(xiàng)和,第二個(gè)k項(xiàng)和,…,第n個(gè)k項(xiàng)和仍然構(gòu)成等差數(shù)列,是中檔題.