【題目】如圖所示的幾何體中,底面為菱形, , , 相交于點(diǎn),四邊形為直角梯形, , ,平面底面.

(1)證明:平面平面;

(2)求二面角的余弦值.

【答案】(1)見解析;(2).

【解析】試題分析:

(1)利用題意證得平面.由面面垂直的判斷定理可得平面平面.

(2)結(jié)合(1)的結(jié)論和題意建立空間直角坐標(biāo)系,由平面的法向量可得二面角的余弦值為.

試題解析:

(1)因?yàn)榈酌?/span>為菱形,所以

又平面底面,平面平面,

因此平面,從而.

,所以平面

, ,

可知, ,

,

從而,故.

,所以平面.

平面,所以平面平面.

(2)取中點(diǎn),由題可知,所以平面,又在菱形中, ,所以分別以 , 的方向?yàn)?/span> , 軸正方向建立空間直角坐標(biāo)系(如圖示),

, , ,

所以 , , .

由(1)可知平面,所以平面的法向量可取為.

設(shè)平面的法向量為,

,得,

所以.

從而 .

故所求的二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四位同學(xué)中僅有一人申請(qǐng)了北京大學(xué)的自主招生考試,當(dāng)他們被問到誰申請(qǐng)了北京大學(xué)的自主招生考試時(shí),甲說:“丙或丁申請(qǐng)了”;乙說:“丙申請(qǐng)了”;丙說:“甲和丁都沒有申請(qǐng)”;丁說:“乙申請(qǐng)了”,如果這四位同學(xué)中只有兩人說的是對(duì)的,那么申請(qǐng)了北京大學(xué)的自主招生考試的同學(xué)是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),現(xiàn)從高一學(xué)生中抽取100人做調(diào)查,得到列聯(lián)表,且已知在100個(gè)人中隨機(jī)抽取1人,抽到喜歡游泳的學(xué)生的概率為.

1)請(qǐng)完成列聯(lián)表;

喜歡游泳

不喜歡游泳

合計(jì)

男生

40

女生

30

合計(jì)

100

2)根據(jù)列聯(lián)表,是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由.

附:參考公式與臨界值表如下:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的左焦點(diǎn)為,且點(diǎn)C上.

C的方程;

設(shè)點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為點(diǎn)不經(jīng)過P點(diǎn)且斜率為k的直線lC交于A,B兩點(diǎn),直線PA,PB分別與x軸交于點(diǎn)M,N,若,求k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1)討論的單調(diào)性;

2)若存在3個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線 為參數(shù), ),在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線 .

(1)試將曲線化為直角坐標(biāo)系中的普通方程,并指出兩曲線有公共點(diǎn)時(shí)的取值范圍;

(2)當(dāng)時(shí),兩曲線相交于, 兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

,當(dāng)時(shí),的單調(diào)遞減區(qū)間;

若函數(shù)有唯一的零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,直線l的參數(shù)方程為:為參數(shù)),直線l與曲線C分別交于M,N兩點(diǎn).

1)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;

2)若點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面上有7個(gè)點(diǎn),每三點(diǎn)的兩兩連線都組成一個(gè)不等邊三角形求證一定可以找到4對(duì)三角形使每對(duì)三角形的公共邊既是其中一個(gè)三角形的最長(zhǎng)邊又是另一個(gè)三角形的最短邊

查看答案和解析>>

同步練習(xí)冊(cè)答案