15.在正方體ABCD-A1B1C1D1中,E,F(xiàn),G,H分別為棱BC,CC1,C1D1,AA1的中點,O為AC與BD的交點.求證:
(1)A1O⊥平面BDF;
(2)平面BDF⊥平面AA1C.

分析 (1)利用線面垂直的判定定理證明DB⊥平面A1ACC1 ,證得A1O⊥DB.再用勾股定理證明A1O⊥OF,這樣,A1O就垂直于平面BFD內(nèi)的兩條相交直線,故A1O⊥平面MBF.
(2)證明BD⊥AO,A1A⊥BD,利用線面垂直的判定定理證明BD⊥平面A1AO,從而證得平面BDF⊥平面AA1C.

解答 證明:(1)連接FO.
∵DB⊥A1A,DB⊥AC,A1A∩AC=A,
∴DB⊥平面A1ACC1
又A1O?平面A1ACC1,∴A1O⊥DB.
在矩形A1ACC1中,tan∠AA1O=$\frac{\sqrt{2}}{2}$,
tan∠FOC=$\frac{\sqrt{2}}{2}$,∴∠AA1O=∠FOC,
則∠A1OA+∠FOC=90°.∴A1O⊥OF.
∵OF∩DB=O,∴A1O⊥平面BDF.
(2)∵O為AC與BD的交點,∴BD⊥AO.再由A1A⊥平面ABCD可得 A1A⊥BD.
故BD垂直于平面平面A1AC中的兩條相交直線AO和A1A,∴BD⊥平面A1AC.
而BD?平面BDF,∴平面BDF⊥平面A1AC.

點評 本題考查證明直線和平面垂直的方法,在其中一個平面內(nèi)找出2條相交直線和另一個平面垂直.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)a,b∈R,定義運算:a*b=$\left\{\begin{array}{l}{a,a≥b}\\{b,a<b}\end{array}\right.$,若x>0,y>0,則($\frac{1}{x}$+$\frac{4}{y}$)*(x+y)的最小值是( 。
A.2$\sqrt{2}$B.2$\sqrt{3}$C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}滿足a1=2,an•an+1=2n(n∈N*),求數(shù)列{an}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.直線x=3與直線2x+y-1=0的夾角是$\frac{π}{2}$-arctan2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知f(x)=x3-x2f′(1)-1,則f′(-1)等于( 。
A.5B.4C.-4D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求下列函數(shù)的導(dǎo)數(shù):
(1)y=x3-x2-x+3;
(2)y=$\frac{2}{{x}^{2}}$+$\frac{3}{{x}^{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)隨機(jī)變量X滿足正態(tài)分布X~N(-1,σ2),若P(-3≤x≤-1)=0.4,則P(-3≤x≤1)=0.8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求y=ax•sinx的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在等比數(shù)列{an}中.
(1)a3=3,q=-2,則a10=-384;
(2)q=2,則$\frac{2{a}_{1}+{a}_{2}}{2{a}_{3}+{a}_{4}}$=$\frac{1}{4}$;
(3)a3+a6=36,a4+a7=18,an=$\frac{1}{2}$,則n=9.

查看答案和解析>>

同步練習(xí)冊答案