【題目】已知橢圓C: =1過點A(2,0),B(0,1)兩點.
(1)求橢圓C的方程及離心率;
(2)設(shè)P為第三象限內(nèi)一點且在橢圓C上,直線PA與y軸交于點M,直線PB與x軸交于點N,求證:四邊形ABNM的面積為定值.

【答案】
(1)

解:∵橢圓C: =1過點A(2,0),B(0,1)兩點,

∴a=2,b=1,則 = ,

∴橢圓C的方程為 ,離心率為e=


(2)

證明:如圖,

設(shè)P(x0,y0),則 ,PA所在直線方程為 ,

取x=0,得 ;

,PB所在直線方程為 ,

取y=0,得

∴|AN|= ,

|BM|=1﹣

= = =

= =

∴四邊形ABNM的面積為定值2.


【解析】(1)由題意可得a=2,b=1,則 ,則橢圓C的方程可求,離心率為e= ;(2)設(shè)P(x0 , y0),求出PA、PB所在直線方程,得到M,N的坐標,求得|AN|,|BM|.由 ,結(jié)合P在橢圓上求得四邊形ABNM的面積為定值2.;本題考查橢圓的標準方程,考查了橢圓的簡單性質(zhì),考查計算能力與推理論證能力,是中檔題.
【考點精析】通過靈活運用橢圓的標準方程,掌握橢圓標準方程焦點在x軸:,焦點在y軸:即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=kax-a-x(a>0且a≠1)是R上的奇函數(shù).

(Ⅰ)求常數(shù)k的值;

(Ⅱ)若a>1,試判斷函數(shù)f(x)的單調(diào)性,并加以證明;

(Ⅲ)若a=2,且函數(shù)g(x)=a2x+a-2x-2mf(x)在[0,1]上的最小值為1,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)abZ,若對任意x≤0,都有(ax+2)(x2+2b)≤0,則a+b=______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓過點,離心率為,左、右焦點分別為,過的直線交橢圓于兩點.

求橢圓C的方程;

的面積為時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,,排列而成的項數(shù)列滿足:每項都大于它之前的所有項或者小于它之前的所有項.

)滿足條件的數(shù)列中,寫出所有的單調(diào)數(shù)列.

)當時,寫出所有滿足條件的數(shù)列.

)滿足條件的數(shù)列的個數(shù)是多少?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=4x+3sinx,x∈(-1,1),如果f(1-a)+f(1-a2)<0成立,則實數(shù)a的取值范圍為(  )

A. (0,1) B. C. D. (-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,恒成立時的范圍是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln(ax+1)(x≥0,a>0), .

(1)討論函數(shù)y=f(x)-g(x)的單調(diào)性;

(2)若不等式f(x)≥g(x)+1在x∈[0,+∞)時恒成立,求實數(shù)a的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于每項均是正整數(shù)的數(shù)列Aa1,a2,…,an,定義變換T1,T1將數(shù)列A變換成數(shù)列T1(A):n,a1-1,a2-1,…,an-1.對于每項均是非負整數(shù)的數(shù)列Bb1,b2,…,bm,定義變換T2,T2將數(shù)列B各項從大到小排列,然后去掉所有為零的項,得到數(shù)列T2(B).又定義S(B)=2(b1+2b2+…+mbm)++…+.設(shè)A0是每項均為正整數(shù)的有窮數(shù)列,令Ak1T2(T1(Ak))(k=0,1,2,…).

(1)如果數(shù)列A02,6,4,8,寫出數(shù)列A1,A2

(2)對于每項均是正整數(shù)的有窮數(shù)列A,證明:S(T1(A))=S(A);

(3)證明:對于任意給定的每項均為正整數(shù)的有窮數(shù)列A0,存在正整數(shù)K,當kK時,S(Ak1)=S(Ak).

查看答案和解析>>

同步練習冊答案