設集合A={-1,1,2},B={a+1,a2+3},A∩B={2},則實數(shù)a的值為( 。
A、1B、2C、3D、0
考點:交集及其運算
專題:集合
分析:由A,B,以及A與B的交集,確定出a的值即可.
解答: 解:∵A={-1,1,2},B={a+1,a2+3},A∩B={2},
∴2∈B,即a+1=2或a2+3=2,
解得:a=1,
故選:A.
點評:此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若點P到點F(0,2)的距離比它到直線y+4=0的距離小2,則P的軌跡方程為(  )
A、y2=8x
B、y2=-8x
C、x2=8y
D、x2=-8y

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方體ABCD-A′B′C′D′中,和AB垂直的棱的條數(shù)是( 。
A、4B、6C、8D、10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一空間幾何體的三視圖如圖所示,該幾何體的體積為( 。
A、
8
3
B、
3
C、
14
3
D、14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有下列四個表達式:
①|
a
+
b
|=|
a
|+|
b
|; ②|
a
-
b
|≥±(|
a
|-|
b
|);③
a
2>|
a
|2; ④|
a
b
|=|
a
|•|
b
|.
其中正確的個數(shù)為( 。
A、0B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面斜坐標系xoy中,∠xoy=60°,平面上任一點P在斜坐標系
中的斜坐標是這樣定義的:若
OP
=xe1+ye2(其中e1、e2分別為與x軸、y
軸方向相同的單位向量),則P點的斜坐標為(x,y).若P點的斜坐標為(3,-4),則點P到原點O的距離|PO|=( 。
A、
13
B、3
3
C、5
D、
11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面幾何中有如下結論:正三角形ABC的內切圓面積為S1,外接圓面積S2,且內切圓半徑與外接圓半徑之比為
1
2
,則
S1
S2
=
1
4
,推廣到空間可以得到類似結論:已知正四面體P-ABC(所有棱長都相等的三棱錐)的內切球體積為V1,外接球體積為V2,且內切球與外接球的半徑之比為
1
3
,則等于
V1
V2
( 。
A、
1
8
B、
1
9
C、
1
27
D、
1
64

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=2sin(ωx+φ)(ω>0,-
π
2
<φ<
π
2
),給出三個論斷:
①它的圖象關于x=
π
8
對稱;
②它的最小正周期為π;
③它在區(qū)間[
π
4
,
8
]上的最大值為
2

以其中的兩個論斷作為條件,另一個作為結論,試寫出你認為正確的一個命題并給予證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a=log32,b=log 
1
3
2
3
,c=log31,則a,b,c大小關系是
 

查看答案和解析>>

同步練習冊答案