如圖已知拋物線的焦點坐標為,過的直線交拋物線于兩點,直線分別與直線:相交于兩點.
(1)求拋物線的方程;
(2)證明△ABO與△MNO的面積之比為定值.
(1);(2)證明過程詳見解析.
解析試題分析:本題主要考查拋物線、直線的方程,以及直線與拋物線的位置關系,突出解析幾何的基本思想和方法的考查:如數形結合思想、坐標化方法等.第一問,利用拋物線的標準方程,利用焦點坐標求出,代入即可;第二問,討論直線垂直和不垂直軸2種情況,當直線垂直于軸時,2個三角形相似,面積比為定值,當直線不垂直于軸時,設出直線的方程,設出四個點坐標,利用直線與拋物線相交列出方程組,消參得到方程,利用兩根之積得為定值,而面積比值與有關,所以也為定值.
試題解析:(1)由焦點坐標為 可知
所以,所以拋物線的方程為 5分
(2)當直線垂直于軸時,與相似,
所以, 7分
當直線與軸不垂直時,設直線AB方程為,
設,,,,
解整理得, 9分
所以, 10分
,
綜上 12分
考點:1.拋物線的標準方程;2.直線方程;3.根與系數關系;4.三角形面積公式.
科目:高中數學 來源: 題型:解答題
已知橢圓的中心在原點,焦點在軸上,離心率為,長軸長為,直線交橢圓于不同的兩點.
(1)求橢圓的方程;
(2)求的取值范圍;
(3)若直線不經過橢圓上的點,求證:直線的斜率互為相反數.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓:()的右焦點,右頂點,右準線且.
(1)求橢圓的標準方程;
(2)動直線:與橢圓有且只有一個交點,且與右準線相交于點,試探究在平面直角坐標系內是否存在點,使得以為直徑的圓恒過定點?若存在,求出點坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的頂點在坐標原點,焦點在軸上,且過點.
(Ⅰ)求拋物線的標準方程;
(Ⅱ)與圓相切的直線交拋物線于不同的兩點若拋物線上一點滿足,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖已知橢圓的中點在原點,焦點在x軸上,長軸是短軸的2倍且過點,平行于的直線在y軸的截距為,且交橢圓與兩點,
(1)求橢圓的方程;(2)求的取值范圍;(3)求證:直線、與x軸圍成一個等腰三角形,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線與雙曲線有公共焦點,點是曲線在第一象限的交點,且.
(Ⅰ)求雙曲線的方程;
(Ⅱ)以雙曲線的另一焦點為圓心的圓與直線相切,圓:.過點作互相垂直且分別與圓、圓相交的直線和,設被圓截得的弦長為,被圓截得的弦長為,問:是否為定值?如果是,請求出這個定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C的中心在坐標原點,焦點在x軸上,左、右焦點分別為F1,F(xiàn)2,且|F1F2|=2,點P(1,)在橢圓C上.
(I)求橢圓C的方程;
(II)如圖,動直線:與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且,,四邊形面積S的求最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,動點到兩點,的距離之和等于4,設點的軌跡為曲線C,直線過點且與曲線C交于A,B兩點.
(Ⅰ)求曲線C的軌跡方程;
(Ⅱ)是否存在△AOB面積的最大值,若存在,求出△AOB的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在平面直角坐標系中,、分別是橢圓的頂點,過坐標原點的直線交橢圓于、兩點,其中在第一象限.過作軸的垂線,垂足為.連接,并延長交橢圓于點.設直線的斜率為.
(Ⅰ)當直線平分線段時,求的值;
(Ⅱ)當時,求點到直線的距離;
(Ⅲ)對任意,求證:.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com