8.設(shè)P(x,y)滿足$\left\{\begin{array}{l}{x-2y≥0}\\{x+2y≥0}\end{array}\right.$,且P點(diǎn)到兩直線x-2y=0,x+2y=0距離之和不大于$\sqrt{5}$,則x-y的最大值為$\frac{15}{4}$.

分析 由點(diǎn)到直線的距離公式化簡可得x≤$\frac{5}{2}$,作出其平面區(qū)域,令z=x-y,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.

解答 解:由點(diǎn)到直線的距離公式可得 $\frac{|x-2y|}{\sqrt{5}}+\frac{|x+2y|}{\sqrt{5}}$≤$\sqrt{5}$,
又∵P(x,y)滿足$\left\{\begin{array}{l}{x-2y≥0}\\{x+2y≥0}\end{array}\right.$,
∴$\frac{x-2y}{\sqrt{5}}+\frac{x+2y}{\sqrt{5}}≤\sqrt{5}$,即x≤$\frac{5}{2}$,
作出其平面區(qū)域如圖,
結(jié)合圖象可知,過點(diǎn)A($\frac{5}{2},-\frac{5}{4}$)時有最大值,
即x-y的最大值為$\frac{5}{2}+\frac{5}{4}=\frac{15}{4}$,
故答案為:$\frac{15}{4}$.

點(diǎn)評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知O是坐標(biāo)原點(diǎn),實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y-1≤0}\\{x+y-3≤0}\\{x≥1}\end{array}\right.$且點(diǎn)A,B的坐標(biāo)分別為(1,y),(2,$\frac{1}{x}$),則z=$\overrightarrow{OA}$$•\overrightarrow{OB}$的取值范圍為[5,9].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知實(shí)數(shù)a,b滿足0≤a≤2,0≤b≤1,則函數(shù)$y=\frac{1}{3}{x^3}-{x^2}+(a+b)x+c$有極值的概率( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知點(diǎn)列Pn(xn,$\frac{2}{{x}_{n}}$)與An(an,0)滿足xn+1>xn,$\overrightarrow{{{P}_{n}P}_{n+1}}$⊥$\overrightarrow{{{A}_{n}P}_{n+1}}$,且|$\overrightarrow{{{P}_{n}P}_{n+1}}$|=|$\overrightarrow{{{A}_{n}P}_{n+1}}$|,其中n∈N*,x1=1.
(I)求xn+1與xn的關(guān)系式;
(Ⅱ)求證:n2<${x}_{2}^{2}$+${x}_{3}^{2}$+…+${x}_{n+1}^{2}$≤4n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.f(x)=$\frac{2x+1}{x-a}$在區(qū)間(1,+∞)上為減函數(shù),則實(shí)數(shù)a的取值范圍是($-\frac{1}{2}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若正數(shù)x,y滿足4x+9y=xy,則x+y的最小值為( 。
A.16B.20C.25D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知x1,x2(x1<x2)是方程4x2-4kx-1=0(k∈R)的兩個不等實(shí)根,函數(shù)f(x)=$\frac{2x-k}{{x}^{2}+1}$的定義域?yàn)閇x1,x2],g(k)=f(x)min-f(x)max,若對任意k∈R,恒有g(shù)(k)≤a$\sqrt{1+{k}^{2}}$成立,則實(shí)數(shù)a的取值范圍是a≥-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.執(zhí)行如圖的程序框圖,若輸入?=0.01,則輸出的N=( 。
A.102B.101C.100D.99

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知命題¬p:存在x∈(1,2)使得ex-a>0,若p是真命題,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,e)B.(-∞,e]C.(e2,+∞)D.[e2,+∞)

查看答案和解析>>

同步練習(xí)冊答案