定義在實數(shù)集R上的函數(shù)f(x),如果存在函數(shù)g(x)=Ax+B(A,B為常數(shù)),使得 f(x)≥g(x)對一切實數(shù)x都成立,那么稱為 g(x)為函數(shù) f(x)的一個承托函數(shù),給出如下命題:
(1)定義域和值域都是R的函數(shù)f(x)不存在承托函數(shù);
(2)g(x)=2x為函數(shù)f(x)=2x的一個承托函數(shù);
(3)g(x)=ex為函數(shù)f(x)=ex的一個承托函數(shù);
(4)函數(shù)f(x)=-
1
5x2-4x+11
,若函數(shù)g(x)的圖象恰為f(x)在點P(1,-
1
12
)
處的切線,則g(x)為函數(shù)f(x)的一個承托函數(shù).其中正確的命題的個數(shù)是( 。
A、0B、1C、2D、3
分析:承托函數(shù)說明函數(shù)f(x)的圖象恒在函數(shù)g(x)的上方(至多有一個交點)
①舉反例:f(x)=2x+3的定義域和值域都是R,存在一個承托函數(shù)y=2x+1,故命題①不正確;
②舉反例:當(dāng)x∈(1,2)時,不滿足f(x)≥g(x),說明g(x)=2x不是函數(shù)f(x)=2x的一個承托函數(shù);
③可以用導(dǎo)數(shù)工具證明在R上 f(x)≥g(x)成立,故g(x)=ex為函數(shù)f(x)=ex的一個承托函數(shù);
④函數(shù)f(x)在點P(1,-
1
12
)
處的切線穿過函數(shù)f(x)圖象,不滿足承托函數(shù)定義.因此不難得出答案.
解答:解:
①f(x)=2x+3的定義域和值域都是R,存在一個承托函數(shù)y=2x+1,故命題①不正確;
②舉反例:當(dāng)x∈(1,2)時,不滿足f(x)≥g(x),比如x=
3
2
時,f(
3
2
)=
8
<g(
3
2
) =9
,
說明g(x)=2x不是函數(shù)f(x)=2x的一個承托函數(shù),故命題②不正確;
③令F(x)=f(x)-g(x)=ex-ex,F(xiàn)′(x)=ex-e=0,得x=1,
當(dāng)x<1時,F(xiàn)′(x)<0,F(xiàn)(x)單調(diào)遞減,
當(dāng)x>1時,F(xiàn)′(x)>0,F(xiàn)(x)單調(diào)遞增,
∴當(dāng)x=1時,F(xiàn)(x)取最小值=e1-e=0,∴③正確;
④f(x)在點P(1,-
1
12
)
處的切線方程為y=
1
24
x-
1
24
=g(x),
取x=10,可以算得f(10)<0<g(10),g(x)不是函數(shù)f(x)的一個承托函數(shù).命題④不正確.
故選B.
點評:新定義題,考查對題意的理解和轉(zhuǎn)化的能力,要說明一個命題是正確的,必須給出證明,如③,對于不正確的命題,舉反例即可,如①②④,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在實數(shù)集R上的函數(shù)f(x),如果存在函數(shù)g(x)=Ax+B(A、B為常數(shù)),使得f(x)≥g(x)對一切實數(shù)x都成立,那么稱g(x)為函數(shù)f(x)的一個承托函數(shù).給出如下四個命題:
①對于給定的函數(shù)f(x),其承托函數(shù)可能不存在,也可能有無數(shù)個;
②定義域和值域都是R的函數(shù)f(x)不存在承托函數(shù);
③g(x)=2x為函數(shù)f(x)=|3x|的一個承托函數(shù);
g(x)=
12
x
為函數(shù)f(x)=x2的一個承托函數(shù).
其中正確的命題有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在實數(shù)集R上的函數(shù)f(x),如果存在函數(shù)g(x)=Ax+B(A,B為常數(shù)),使得f(x)≥g(x)對一切實數(shù)都成立,那么稱為g(x)為函數(shù)f(x)的一個承托函數(shù),給出如下命題:
①定義域和值域都是R的函數(shù)f(x)不存在承托函數(shù);
②g(x)=2x為函數(shù)f(x)=ex的一個承托函數(shù);
③g(x)=
1
2
x為函數(shù)f(x)=x2的一個承托函數(shù);
④對給定的函數(shù)f(x),其承托函數(shù)可能不存在,也可能有無數(shù)個
其中正確的命題的個數(shù)是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在實數(shù)集R上的函數(shù)f(x),如果存在函數(shù)g(x)=Ax+B(A,B為常數(shù)),使得f(x)≥g(x)對一切實數(shù)x都成立,那么稱g(x)為函數(shù)f(x)的一個承托函數(shù).
下列說法正確的有:
①②
①②
.(寫出所有正確說法的序號)
①對給定的函數(shù)f(x),其承托函數(shù)可能不存在,也可能有無數(shù)個;
②g(x)=ex為函數(shù)f(x)=ex的一個承托函數(shù);
③函數(shù)f(x)=
x
x2+x+1
不存在承托函數(shù);
④函數(shù)f(x)=
1
5x2-4x+11
,若函數(shù)g(x)的圖象恰為f(x)在點p(1,
1
2
)
處的切線,則g(x)為函數(shù)f(x)的一個承托函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在實數(shù)集R上的函數(shù)f(x),如果存在函數(shù)g(x)=Ax+B(A,B為常數(shù))使得f(x)≥g(x)對任意的x∈R都成立,則稱g(x)為函數(shù)f(x)的一個承托函數(shù),則下列說法正確的是( 。
A、函數(shù)f(x)=x2-2x不存在承托函數(shù)
B、g(x)=x為函數(shù)f(x)=sinx的一個承托函數(shù)
C、g(x)=x為函數(shù)f(x)=ex-1的一個承托函數(shù)
D、函數(shù)f(x)=
2x
x2-x+1
不存在承托函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實數(shù)集R上的函數(shù)f(x),同時滿足以下三個條件:
①f(-1)=2;②x<0時,f(x)>1;③對任意實數(shù)x,y都有f(x+y)=f(x)f(y);
(1)求f(0),f(-4)的值; 
(2)判斷函數(shù)f(x)的單調(diào)性,并求出不等式f(-4x2)f(10x)≥
116
的解集.

查看答案和解析>>

同步練習(xí)冊答案