10.若由一個2×2列聯(lián)表中的數(shù)據(jù)計算得K2的觀測值k≈6.630,則判斷“這兩個分類變量有關(guān)系”時,犯錯誤的最大概率是0.025.
參考數(shù)據(jù):
P(K2≥k00.500.400.250.150.100.050.0250.0100.005
k00.4550.7081.3232.0722.7063.8415.0246.6357.879

分析 根據(jù)K2的觀測值,對照臨界值即可得出結(jié)論.

解答 解:根據(jù)數(shù)據(jù)計算得K2的觀測值k≈6.630>5.024,
所以判斷“這兩個分類變量有關(guān)系”時,犯錯誤的最大概率是0.025.
故答案為:0.025.

點評 本題考查了對立性檢驗的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.?dāng)?shù)列{an}中,a1=$\frac{1}{3}$,an+1=$\frac{2{a}_{n}-1}{{a}_{n}}$(n∈N*),數(shù)列{bn}滿足bn=$\frac{1}{{a}_{n}-1}$.
(1)求數(shù)列{bn}中前四項;
(2)求證:數(shù)列{bn}是等差數(shù)列;
(3)若cn=(an+2)($\frac{10}{9}$)n,試判斷數(shù)列{cn}是否有最小值,若有最小項,求出最小項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.點A(1,-2)關(guān)于原點對稱的對稱點到(3,m)的距離是2$\sqrt{5}$,則m的值是-2或6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列函數(shù)中,圖象與函數(shù)y=4x的圖象關(guān)于y軸對稱的是( 。
A.y=-4xB.y=4-xC.y=-4-xD.y=4x+4-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在平面直角坐標(biāo)系中,由|x|+|y|≤2所表示的區(qū)域記為A,由區(qū)域A及拋物線y=x2圍成的公共區(qū)域記為B,隨機往區(qū)域A內(nèi)投一個點M,則點M落在區(qū)域B內(nèi)的概率是(  )
A.$\frac{7}{48}$B.$\frac{11}{12}$C.$\frac{7}{24}$D.$\frac{19}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知m,n∈N+,在(1+x)m(1+y+2z)n的展開式中,若x3y3的系數(shù)不小90,則m+n的最小值為13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.有下列命題:
①若f(x)存在導(dǎo)函數(shù),則f'(2x)=[f(2x)]';
②若g(x)=(x-1)(x-2)…(x-2013),則g'(2013)=2012!;
③若函數(shù)y=f(x)滿足f′(x)>f(x),則當(dāng)a>0時,f(a)>eaf(0);
④若f(x)=ax3+bx2+cx+d,則a+b+c=0是f(x)有極值點的充要條件.
其中正確命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖,網(wǎng)格上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體的各條棱中,最長的棱的長度為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x3+ax2-6x+b(b>0)在x=2處取得極值.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)有兩個零點,求f(x)在x=1處的切線方程.

查看答案和解析>>

同步練習(xí)冊答案