【題目】如圖所示,已知A、B、C是一條直路上的三點,AB與BC各等于1 km,從三點分別遙望塔M,在A處看見塔在北偏東45°方向,在B處看塔在正東方向,在點C處看見塔在南偏東60°方向,求塔到直路ABC的最短距離.
【答案】
【解析】試題分析:由S△MAB與S△MBC底相同高相同得S△MAB=S△MBC;利用三角形面積公式代入整理得MC= MA,然后根據(jù)余弦定理得AC2=MA2+MC2-2MA·MC·cos 75°= MA;最后根據(jù)三角形的面積公式得 MA·MC·sin 75°= AC·h,整理求出h= (km).
試題解析:
由題意∠CMB=30°,∠AMB=45°,
因為AB=BC=1,所以S△MAB=S△MBC,
即 MA·MB·sin 45°= MC·MB·sin 30°,
所以MC= MA,
在△MAC中,由余弦定理AC2=MA2+MC2-2MA·MC·cos 75°,
所以MA2=,
設(shè)M到AB的距離為h,則由△MAC的面積得
MA·MC·sin 75°= AC·h,
所以h= ·sin 75°= ··sin 75°= (km).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)是奇函數(shù),求實數(shù)的值;
(2)在(1)的條件下,判斷函數(shù)與函數(shù)的圖象公共點個數(shù),并說明理由;
(3)當(dāng)時,函數(shù)的圖象始終在函數(shù)的圖象上方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了弘揚民族文化,某校舉行了“我愛國學(xué),傳誦經(jīng)典”考試,并從中隨機(jī)抽取了100名考生的成績(得分均為整數(shù),滿足100分)進(jìn)行統(tǒng)計制表,其中成績不低于80分的考生被評為優(yōu)秀生,請根據(jù)頻率分布表中所提供的數(shù)據(jù),用頻率估計概率,回答下列問題.
分組 | 頻數(shù) | 頻率 |
5 | 0.05 | |
0.20 | ||
35 | ||
25 | 0.25 | |
15 | 0.15 | |
合計 | 100 | 1.00 |
(1)求的值并估計這100名考生成績的平均分;
(2)按頻率分布表中的成績分組,采用分層抽樣抽取20人參加學(xué)校的“我愛國學(xué)”宣傳活動,求其中優(yōu)秀生的人數(shù);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓上的點A(2,3)關(guān)于直線x+2y=0的對稱點仍在圓上,且直線x-y+1=0被圓截得的弦長為2,求圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 一枚骰子擲一次得到2點的概率為,這說明一枚骰子擲6次會出現(xiàn)一次2點
B. 某地氣象臺預(yù)報說,明天本地降水的概率為70%,這說明明天本地有70%的區(qū)域下雨,30%的區(qū)域不下雨
C. 某中學(xué)高二年級有12個班,要從中選2個班參加活動,由于某種原因,一班必須參加,另外再從二至十二班中選一個班,有人提議用如下方法:擲兩枚骰子得到的點數(shù)是幾,就選幾班,這是很公平的方法
D. 在一場乒乓球賽前,裁判一般用擲硬幣猜正反面來決定誰先打球,這應(yīng)該說是公平的
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎.抽獎方法是:從裝有個紅球,和個白球的甲箱與裝有個紅球,和個白球,的乙箱中,各隨機(jī)摸出個球,若模出的個球都是紅球則中獎,否則不中獎.
(1)用球的標(biāo)號列出所有可能的模出結(jié)果;
(2)有人認(rèn)為:兩個箱子中的紅球比白球多所以中獎的概率大于不中獎的概率,你認(rèn)為正確嗎?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲、乙兩種產(chǎn)品所需煤、電力、勞動力、獲得利潤及每天資源限額(最大供應(yīng)量)如表所示:
資源 消耗量 產(chǎn)品 | 甲產(chǎn)品(每噸) | 乙產(chǎn)品(每噸) | 資源限額(每天) |
煤() | 9 | 4 | 360 |
電力() | 4 | 5 | 200 |
勞力(個) | 3 | 10 | 300 |
利潤(萬元) | 7 | 12 |
問:每天生產(chǎn)甲、乙兩種產(chǎn)品各多少噸,獲得利潤總額最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中, 是的中心, 分別是線段上的動點,且, .
(Ⅰ)若直線平面,求實數(shù)的值;
(Ⅱ)若,正方體的棱長為2,求平面和平面所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知中心在原點,離心率為的橢圓的一個焦點為圓: 的圓心.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓上一點,過作兩條斜率之積為的直線, ,當(dāng)直線, 都與圓相切時,求的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com