【題目】定義在R上的偶函致y=f(x),恒有f(x+4)=f(x)﹣f(﹣2)成立,且f(0)=1,當(dāng)0≤x1<x2≤2時(shí), <0,則方程f(x)﹣lg|x|=0的根的個(gè)數(shù)為(
A.12
B.10
C.6
D.5

【答案】B
【解析】解:∵f(x)是R上的偶函數(shù),且f(x+4)=f(x)﹣f(﹣2),
∴f(﹣2+4)=f(﹣2)﹣f(﹣2)=0,
∴f(2)=f(﹣2)=0.
∴f(x+4)=f(x),
∴f(x)是以4為周期的周期函數(shù).
∵當(dāng)0≤x1<x2≤2時(shí), <0,
∴f(x)在[0,2]上是減函數(shù),在[﹣2,0]上是增函數(shù).
做出y=f(x)與y=lg|x|的函數(shù)的部分圖象如下:

由圖象可知y=f(x)與y=lg|x|在(0,+∞)上有5個(gè)交點(diǎn),
根據(jù)函數(shù)的對稱性可知y=f(x)與y=lg|x|在(﹣∞,0)上有5個(gè)交點(diǎn),
∴方程f(x)﹣lg|x|=0有10個(gè)根.
故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)若,求曲線的單調(diào)性;

2)若處取得極大值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率為 ,左焦點(diǎn)到左頂點(diǎn)的距離為1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)M(1,1)的直線與橢圓C相交于A,B兩點(diǎn),且點(diǎn)M為弦AB中點(diǎn),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,圓的極坐標(biāo)方程為,若以極點(diǎn)為原點(diǎn),極軸所在的直線為軸建立平面直角坐標(biāo)系.

(1)求圓的參數(shù)方程;

(2)在直線坐標(biāo)系中,點(diǎn)是圓上的動(dòng)點(diǎn),試求的最大值,并求出此時(shí)點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種零件按質(zhì)量標(biāo)準(zhǔn)分為1,2,3,4,5五個(gè)等級(jí),現(xiàn)從一批該零件巾隨機(jī)抽取20個(gè),對其等級(jí)進(jìn)行統(tǒng)計(jì)分析,得到頻率分布表如下

等級(jí)

1

2

3

4

5

頻率

0.05

m

0.15

0.35

n


(1)在抽取的20個(gè)零件中,等級(jí)為5的恰有2個(gè),求m,n;
(2)在(1)的條件下,從等級(jí)為3和5的所有零件中,任意抽取2個(gè),求抽取的2個(gè)零件等級(jí)恰好相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲正弦函數(shù)shx= 和雙曲余弦函數(shù)chx= 與我們學(xué)過的正弦函數(shù)和余弦函數(shù)有許多類似的性質(zhì),請類比正弦函數(shù)和余弦函數(shù)的和角公式,寫出雙曲正弦或雙曲余弦函數(shù)的一個(gè)類似的正確結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x2ex1 x3﹣x2(x∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈(1,+∞)時(shí),用數(shù)學(xué)歸納法證明:n∈N* , ex1 (其中n!=1×2×…×n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≥0時(shí),f(x)=x|x﹣2|.若關(guān)于x的方程f2(x)+af(x)+b=0(a,b∈R)恰有10個(gè)不同實(shí)數(shù)解,則a的取值范圍為(
A.(0,2)
B.(﹣2,0)
C.(1,2)
D.(﹣2,﹣1)

查看答案和解析>>

同步練習(xí)冊答案