【題目】在數(shù)列中,已知,對于任意的,有.

(1)求數(shù)列的通項公式.

(2)若數(shù)列滿足,求數(shù)列的通項公式.

(3)設(shè),是否存在實數(shù),當時,恒成立?若存在,求實數(shù)的取值范圍;若不存在,請說明理由.

【答案】(1); (2);(3).

【解析】

(1)取,則.所以,即是公差為2,首項為2的等差數(shù)列.再求數(shù)列的通項.(2)利用作差法求數(shù)列的通項公式.(3)

由題意得:,假設(shè)存在,使,化簡得

,再對n分奇數(shù)和偶數(shù)兩種情況討論,分別分離參數(shù)求出

(1)取,,則.

所以,即是公差為2,首項為2的等差數(shù)列.

所以.檢驗對任意成立。

(2)因為

所以.②

①—②得:,所以.

時,,所以,滿足上式.

所以.

(3)由題意得:,

假設(shè)存在,使,

.

所以.

所以.

為正偶數(shù)時,恒成立,

,

所以.

所以.

為正奇數(shù)時,恒成立,

,

所以.

所以.

綜上可知,存在實數(shù).使時,恒成立.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x﹣2,g(x)=2x﹣5,則不等式|f(x)|+|g(x)|≤2的解集為;|f(2x)|+|g(x)|的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足:f(2)=1,且對于任意的x∈R,都有f′(x)< ,則不等式f(log2x)> 的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: (a>b>0)的離心率 ,且點 在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)直線l與橢圓E交于A、B兩點,且線段AB的垂直平分線經(jīng)過點 .求△AOB(O為坐標原點)面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12)

已知關(guān)于的不等式,其中.

1)當變化時,試求不等式的解集;

2)對于不等式的解集,若滿足(其中為整數(shù)集). 試探究集合能否為有限集?若 能,求出使得集合中元素個數(shù)最少的的所有取值,并用列舉法表示集合;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義[x]表示不超過x的最大整數(shù),例如[2.11]=2,[﹣1.39]=﹣2,執(zhí)行如下圖所示的程序框圖,則輸出m的值為 (

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: =1(a>b>0)的離心率是 ,過E的右焦點且垂直于橢圓長軸的直線與橢圓交于A,B兩點,|AB|=2.
(Ⅰ)求橢圓方程;
(Ⅱ)過點P(0, )的動直線l與橢圓E交于的兩點M,N(不是的橢圓頂點),是否存在實數(shù)λ,使 為定值?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,點M到點的距離比它到軸的距離大2,記點M的軌跡為C.

(1)求軌跡C的方程;

(2)若直線與軌跡C恰有2個公共點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某校甲、乙、丙三個年級的學(xué)生志愿者人數(shù)分別為240,160,160.現(xiàn)采用分層抽樣的方法從中抽取7名同學(xué)去某敬老院參加獻愛心活動.

(Ⅰ)應(yīng)從甲、、丙三個年級的學(xué)生志愿者中分別抽取多少人?

設(shè)抽出的7名同學(xué)分別用A,B,C,D,E,F,G表示,現(xiàn)從中隨機抽取2名同學(xué)承擔敬老院的衛(wèi)生工作.

(i)試用所給字母列舉出所有可能的抽取結(jié)果;

(ii)設(shè)M為事件“抽取的2名同學(xué)來自同一年級”,求事件M發(fā)生的概率.

查看答案和解析>>

同步練習冊答案