11.設(shè)f(x)=$\frac{{x-\sqrt{3}}}{{\sqrt{3}x+1}}$,且滿足fn(x)=f(fn-1(x)),n∈N*,若f0(x)=f(x),則f2015(0)=( 。
A.0B.$\sqrt{3}$C.$-\sqrt{3}$D.2015

分析 由題意,可先求出f1(x),f2(x),f3(x)…,歸納出fn+3(x)=fn(x),即可得出f2015(x)的表達式,進而得到f2015(0)=0.

解答 解:f0(x)=f(x)=$\frac{{x-\sqrt{3}}}{{\sqrt{3}x+1}}$,
f1(x)=f(f(x))=$\frac{\frac{x-\sqrt{3}}{1+\sqrt{3}x}-\sqrt{3}}{1+\sqrt{3}•\frac{x-\sqrt{3}}{1+\sqrt{3}x}}$=$\frac{x+\sqrt{3}}{1-\sqrt{3}x}$,
f2(x)=f(f1(x))=$\frac{\frac{x+\sqrt{3}}{1-\sqrt{3}x}-\sqrt{3}}{1+\sqrt{3}•\frac{x+\sqrt{3}}{1-\sqrt{3}x}}$=x,
f3(x)=f(f2(x))=f(x)=f0(x),
f4(x))=f(f3(x))=f1(x),
…,
則fn+3(x)=fn(x),
故f2015(x)=f3×671+2(x)=f2(x)=x,
則f2015(0)=0.
故選A.

點評 本題考查函數(shù)的性質(zhì),考查邏輯推理中歸納推理,由特殊到一般進行歸納得出結(jié)論是解題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2x+cosx,x≥0}\\{x(a-x),x<0}\end{array}\right.$若關(guān)于x的不等式f(x)<π的解集為(-∞,$\frac{π}{2}$),則實數(shù)a的取值范圍是a>-2$\sqrt{π}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知正項等差數(shù)列{an}的公差d為函數(shù)f(x)=x3-6x2+9x的兩極值點之差,且d,a2+1,13-a3成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足$\frac{_{1}}{{a}_{1}}$+$\frac{_{2}}{{a}_{2}}$+…+$\frac{_{n}}{{a}_{n}}$=1-$\frac{1}{{2}^{n}}$,n∈N*,求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)f(x)為R上的偶函數(shù).且對任意x∈R都有f(x+6)=f(x)+f(3),則f(2007)=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若實數(shù)a,b在區(qū)間[0,$\sqrt{2}$]上取值,則函數(shù)f(x)=$\frac{2}{3}$ax3+bx2+ax在R上有兩個相異極值點的概率是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{4}$C.$\frac{\sqrt{2}}{8}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.$\underset{lim}{n→∞}$$\frac{4{n}^{2}-7}{{n}^{2}+5n+3}$=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.用數(shù)學歸納法證明不等式$\frac{n+2}{2}$<1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n}}$<n+1(n>1,n∈N*)的過程中,當n=2時,中間式子為( 。
A.1B.1+$\frac{1}{2}$C.1+$\frac{1}{2}$+$\frac{1}{3}$D.1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在(3-x)5的展開式中,含x3的項的系數(shù)是-90(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知等差數(shù)列{an},a2=1,a4=3
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足bn=${2^{a_n}}$(n∈N+),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案