A. | ①③ | B. | ②④ | C. | ①② | D. | ③④ |
分析 利用“1的飽和函數(shù)”的概念對所給的四個函數(shù)分別驗證,能求出結(jié)果.
解答 解:對于①,若存在實數(shù)x0,滿足f(x0+1)=f(x0)+f(1),
則$\frac{1}{{x}_{0}+1}=\frac{1}{{x}_{0}}+1$,所以${{x}_{0}}^{2}+{x}_{0}+1=0,({x}_{0}≠0,且{x}_{0}≠1)$,
該方程無實根,因此①不是“1的飽和函數(shù)”;
對于②,若存在實數(shù)x0,滿足f(x0+1)=f(x0)+f(1),
則${2}^{{x}_{0}+1}={2}^{{x}_{0}}+2$,解得x0=1,因此②是“1的飽和函數(shù)”;
對于③,若存在實數(shù)x0,滿足f(x0+1)=f(x0)+f(1),
則$lg[({x}_{0}+1)^{2}+2]=lg({{x}_{0}}^{2}+2)+lg({1}^{2}+2)$,
化簡得$2{{x}_{0}}^{2}-2{x}_{0}+3$=0,該方程無實根,因此③不是“1的飽和函數(shù)”;
對于④,注意到$f(\frac{1}{3}+1)=cos\frac{4π}{3}=-\frac{1}{2}$,f($\frac{1}{3}$)+f(1)=$cos\frac{π}{3}+cosπ=-\frac{1}{2}$,
即f($\frac{1}{3}+1$)=f($\frac{1}{3}$)+f(1),
因此是“1的飽和函數(shù)”,
綜上可知,其中是“1的飽和函數(shù)”的所有函數(shù)的序號是②④.
故選:B.
點評 本題考查“1的飽和函數(shù)”的判斷,是中檔題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|1<x<2} | B. | {x|0<x≤1} | C. | {x|0<x<1} | D. | {x|1≤x<2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | $\sqrt{2}$ | C. | -$\sqrt{2}$或$\sqrt{2}$ | D. | -2$\sqrt{2}$或2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | $\frac{\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32 | B. | 36 | C. | 48 | D. | 64 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com