【題目】在平面直角坐標系中,動點P到兩點、的距離之差的絕對值等于.設點P的軌跡為C.
(1)求C的軌跡方程;
(2)過點的直線l與曲線C交于M,N兩點,且Q恰好為線段的中點,求直線l的方程.
【答案】(1)(2).
【解析】
(1)根據條件,結合雙曲線定義即可求得雙曲線的標準方程.
(2)當斜率不存在時,不符合題意;當斜率存在時,設出直線方程,聯立雙曲線,變形后由中點坐標公式可求得斜率,即可求得直線方程.
(1)動點P到兩點的距離之差的絕對值等于,且,
設,則,
根據雙曲線定義可知動點P的軌跡C為雙曲線,
焦點在軸上,且,所以,
則雙曲線的標準方程為C:.
(2)過點的直線l與曲線C交于M,N兩點,且Q恰好為線段的中點,
當直線斜率不存在時,直線方程為,則由雙曲線對稱性可知線段的中點在軸上,所以不滿足題意;
當斜率存在時,設直線方程為,設,
則,化簡可得,
因為有兩個交點,所以
化簡可得恒成立,
所以,
因為恰好為線段的中點,則,
化簡可得,
所以直線方程為,即.
科目:高中數學 來源: 題型:
【題目】某高校大一新生中,來自東部地區(qū)的學生有2400人、中部地區(qū)學生有1600人、西部地區(qū)學生有1000人.從中選取100人作樣本調研飲食習慣,為保證調研結果相對準確,下列判斷正確的有( )
①用分層抽樣的方法分別抽取東部地區(qū)學生48人、中部地區(qū)學生32人、西部地區(qū)學生20人;
②用簡單隨機抽樣的方法從新生中選出100人;
③西部地區(qū)學生小劉被選中的概率為;
④中部地區(qū)學生小張被選中的概率為
A. ①④ B. ①③ C. ②④ D. ②③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,E為CD的中點.
(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;
(Ⅲ)棱PB上是否存在點F,使得CF∥平面PAE?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知、分別為橢圓的左、右焦點,點關于直線對稱的點Q在橢圓上,則橢圓的離心率為______;若過且斜率為的直線與橢圓相交于AB兩點,且,則___.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】大學先修課程,是在高中開設的具有大學水平的課程,旨在讓學有余力的高中生早接受大學思維方式、學習方法的訓練,為大學學習乃至未來的職業(yè)生涯做好準備.某高中成功開設大學先修課程已有兩年,共有250人參與學習先修課程.
(Ⅰ)這兩年學校共培養(yǎng)出優(yōu)等生150人,根據下圖等高條形圖,填寫相應列聯表,并根據列聯表檢驗能否在犯錯的概率不超過0.01的前提下認為學習先修課程與優(yōu)等生有關系?
優(yōu)等生 | 非優(yōu)等生 | 總計 | |
學習大學先修課程 | 250 | ||
沒有學習大學先修課程 | |||
總計 | 150 |
(Ⅱ)某班有5名優(yōu)等生,其中有2名參加了大學生先修課程的學習,在這5名優(yōu)等生中任選3人進行測試,求這3人中至少有1名參加了大學先修課程學習的概率.
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
參考公式:,其中
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某設計部門承接一產品包裝盒的設計(如圖所示),客戶除了要求、邊的長分別為和外,還特別要求包裝盒必需滿足:①平面平面;②平面與平面所成的二面角不小于;③包裝盒的體積盡可能大.
若設計部門設計出的樣品滿足:與均為直角且長,矩形的一邊長為,請你判斷該包裝盒的設計是否能符合客戶的要求?說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com