精英家教網 > 高中數學 > 題目詳情

【題目】在平面直角坐標系中,動點P到兩點、的距離之差的絕對值等于.設點P的軌跡為C.

1)求C的軌跡方程;

2)過點的直線l與曲線C交于M,N兩點,且Q恰好為線段的中點,求直線l的方程.

【答案】12.

【解析】

1)根據條件,結合雙曲線定義即可求得雙曲線的標準方程.

2)當斜率不存在時,不符合題意;當斜率存在時,設出直線方程,聯立雙曲線,變形后由中點坐標公式可求得斜率,即可求得直線方程.

1)動點P到兩點的距離之差的絕對值等于,且

,則,

根據雙曲線定義可知動點P的軌跡C為雙曲線,

焦點在軸上,且,所以,

則雙曲線的標準方程為C.

2)過點的直線l與曲線C交于M,N兩點,且Q恰好為線段的中點,

當直線斜率不存在時,直線方程為,則由雙曲線對稱性可知線段的中點在軸上,所以不滿足題意;

當斜率存在時,設直線方程為,設,

,化簡可得,

因為有兩個交點,所以

化簡可得恒成立,

所以

因為恰好為線段的中點,則,

化簡可得

所以直線方程為,即.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某高校大一新生中,來自東部地區(qū)的學生有2400人、中部地區(qū)學生有1600人、西部地區(qū)學生有1000人.從中選取100人作樣本調研飲食習慣,為保證調研結果相對準確,下列判斷正確的有( )

①用分層抽樣的方法分別抽取東部地區(qū)學生48人、中部地區(qū)學生32人、西部地區(qū)學生20人;

②用簡單隨機抽樣的方法從新生中選出100人;

③西部地區(qū)學生小劉被選中的概率為

④中部地區(qū)學生小張被選中的概率為

A. ①④ B. ①③ C. ②④ D. ②③

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,.

1)試判斷函數上的單調性,并說明理由;

2)若是在區(qū)間上的單調函數,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,ECD的中點.

(Ⅰ)求證:BD⊥平面PAC;

(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;

(Ⅲ)棱PB上是否存在點F,使得CF∥平面PAE?說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知、分別為橢圓的左、右焦點,點關于直線對稱的點Q在橢圓上,則橢圓的離心率為______;若過且斜率為的直線與橢圓相交于AB兩點,且,則___.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】大學先修課程,是在高中開設的具有大學水平的課程,旨在讓學有余力的高中生早接受大學思維方式、學習方法的訓練,為大學學習乃至未來的職業(yè)生涯做好準備.某高中成功開設大學先修課程已有兩年,共有250人參與學習先修課程.

(Ⅰ)這兩年學校共培養(yǎng)出優(yōu)等生150人,根據下圖等高條形圖,填寫相應列聯表,并根據列聯表檢驗能否在犯錯的概率不超過0.01的前提下認為學習先修課程與優(yōu)等生有關系?

優(yōu)等生

非優(yōu)等生

總計

學習大學先修課程

250

沒有學習大學先修課程

總計

150

(Ⅱ)某班有5名優(yōu)等生,其中有2名參加了大學生先修課程的學習,在這5名優(yōu)等生中任選3人進行測試,求這3人中至少有1名參加了大學先修課程學習的概率.

參考數據:

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

參考公式:,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體中,四邊形為正方形,,,.

(1)證明:平面平面.

(2)若平面,二面角,三棱錐的外接球的球心為,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

討論函數的單調性;

,對任意的恒成立,求整數的最大值;

求證:當時,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某設計部門承接一產品包裝盒的設計(如圖所示),客戶除了要求邊的長分別為外,還特別要求包裝盒必需滿足:平面平面;平面與平面所成的二面角不小于包裝盒的體積盡可能大.

若設計部門設計出的樣品滿足:均為直角且,矩形的一邊長為,請你判斷該包裝盒的設計是否能符合客戶的要求?說明理由.

查看答案和解析>>

同步練習冊答案