【題目】已知函數(shù)
討論函數(shù)的單調(diào)性;
設(shè),對(duì)任意的恒成立,求整數(shù)的最大值;
求證:當(dāng)時(shí),
【答案】(1)當(dāng)時(shí),函數(shù)在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減;(2);(3)證明見解析.
【解析】
(1)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(2)若a≤0,則f(1)=﹣a+1>0,不滿足f(x)≤0恒成立.若a>0,由(Ⅰ)可知,函數(shù)f(x)在(0,)上單調(diào)遞增;在()上單調(diào)遞減.由此求出函數(shù)的最大值,由最大值小于等于0可得實(shí)數(shù)a的取值范圍.
(3)由(2)可知,當(dāng)a=1時(shí),f(x)≤0恒成立,即lnx﹣x+1≤0.得到﹣xlnx≥﹣x2+x,則ex﹣xlnx+x﹣1≥ex﹣x2+2x﹣1.然后利用導(dǎo)數(shù)證明ex﹣x2+2x﹣1>0(x>0),即可說(shuō)明ex﹣xlnx+x>0.
(1)∵函數(shù) f(x)=(a∈R ).
∴,x>0,
當(dāng)a=0時(shí),f′(x)0,f(x)在(0,+∞)單調(diào)遞增.
當(dāng)a>0時(shí),f′(x)>0,f(x)在(0,+∞)單調(diào)遞增.
當(dāng)a<0時(shí),令f′(x)>0,解得:0<x,
令f′(x)<0,解得:x,
故f(x)在(0,)遞增,在(,+∞)遞減.
(2)當(dāng)時(shí),則f(1)=2a+3>0,不滿足f(x)≤0恒成立.
若a<0,由(1)可知,函數(shù)f(x)在(0,)遞增,在(,+∞)遞減.
∴,又f(x)≤0恒成立,
∴f(x)max≤0,即0,令g(a)=,則g(a)單調(diào)遞增,g(-1)=1,
g(-2)=<0,∴a時(shí),g(a) <0恒成立,此時(shí)f(x)≤0恒成立,
∴整數(shù)的最大值-2.
(3)由(2)可知,當(dāng)a=-2時(shí),f(x)≤0恒成立,即lnx﹣2x2+1≤0.即xlnx﹣2x3+x≤0,恒成立,①
又ex﹣x2+2x﹣1+()
∴只需證ex﹣x2+2x﹣1,
記g(x)=ex﹣x2+2x﹣1(x>0),則g′(x)=ex﹣2x+2,
記h(x)=ex﹣2x+2,則h′(x)=ex﹣2,由h′(x)=0,得x=ln2.
當(dāng)x∈(0,ln2)時(shí),h′(x)<0;當(dāng)x∈(ln2,+∞)時(shí),h′(x)>0.
∴函數(shù)h(x)在(0,ln2)上單調(diào)遞減;在(ln2,+∞)上單調(diào)遞增.
∴4﹣2ln2>0.
∴h(x)>0,即g′(x)>0,故函數(shù)g(x)在(0,+∞)上單調(diào)遞增.
∴g(x)>g(0)=e0﹣1=0,即ex﹣x2+2x﹣1>0.
結(jié)合①∴ex﹣x2+2x﹣1+()>0,即>0成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l1:kx-y+4=0與直線l2:x+ky-3=0相交于點(diǎn)P,則當(dāng)實(shí)數(shù)k變化時(shí),點(diǎn)P到直線4x-3y+10=0的距離的最大值為( 。
A.2B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和零點(diǎn);
(2)若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在教材中,我們已研究出如下結(jié)論:平面內(nèi)條直線最多可將平面分成個(gè)部分.現(xiàn)探究:空間內(nèi)個(gè)平面最多可將空間分成多少個(gè)部分,.設(shè)空間內(nèi)個(gè)平面最多可將空間分成個(gè)部分.
(1)求的值;
(2)用數(shù)學(xué)歸納法證明此結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以橢圓:的中心為圓心,為半徑的圓稱為該橢圓的“準(zhǔn)圓”.設(shè)橢圓的左頂點(diǎn)為,左焦點(diǎn)為,上頂點(diǎn)為,且滿足,.
(1)求橢圓及其“準(zhǔn)圓”的方程;
(2)若橢圓的“準(zhǔn)圓”的一條弦與橢圓交于、兩點(diǎn),試證明:當(dāng)時(shí),弦的長(zhǎng)為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代有著輝煌的數(shù)學(xué)研究成果,其中的《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,有豐富多彩的內(nèi)容,是了解我國(guó)古代數(shù)學(xué)的重要文獻(xiàn),這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時(shí)期,某中學(xué)擬從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時(shí)期專著的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)任意的和恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex(x﹣a)2+4.
(1)若f(x)在(﹣∞,+∞)上單調(diào)遞增,求a的取值范圍;
(2)若x≥0,不等式f(x)≥0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是正方形,側(cè)棱底面,過作垂直交于點(diǎn),作垂直交于點(diǎn),平面交于點(diǎn),點(diǎn)為上一動(dòng)點(diǎn),且,.
(1)試證明不論點(diǎn)在何位置,都有;
(2)求的最小值;
(3)設(shè)平面與平面的交線為,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com