【題目】下列函數(shù)既是奇函數(shù),又在間區(qū) 上單調(diào)遞減的是( )
A.
B.
C.
D.

【答案】C
【解析】A. 為奇函數(shù),在區(qū)間 上單調(diào)遞增,∴A不符合題意;B. 為奇函數(shù),在區(qū)間 上單調(diào)遞增,∴B不符合題意;C.定義域?yàn)? ,關(guān)于原點(diǎn)對(duì)稱(chēng),且 ,故其為奇函數(shù), 在區(qū)間 上單調(diào)遞減,∴C符合題意;D. 的定義域?yàn)? ,且 ;∴為奇函數(shù); ; 上單調(diào)遞減, 單調(diào)遞增;∴ 上單調(diào)遞增,∴D不符合題意.
所以答案是:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)單調(diào)性的判斷方法的相關(guān)知識(shí),掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較,以及對(duì)函數(shù)奇偶性的性質(zhì)的理解,了解在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究某高校大學(xué)5000名新生的視力情況,隨機(jī)地抽查了該校100名進(jìn)校新生的視力情況,得到其頻率分布直方圖如右圖,若規(guī)定視力低于5.0的學(xué)生屬[于近視學(xué)生,則估計(jì)該校新生中不是近視的人數(shù)約為( 。

A.300人
B.400人
C.600人
D.1000人

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=ax3﹣x2﹣x+b(a,b∈R,a≠0),g(x)= (e是自然對(duì)數(shù)的底數(shù)),f(x)的圖象在x=﹣ 處的切線方程為y=
(1)求a,b的值;
(2)探究直線y= .是否可以與函數(shù)g(x)的圖象相切?若可以,寫(xiě)出切點(diǎn)的坐標(biāo),否則,說(shuō)明理由;
(3)證明:當(dāng)x∈(﹣∞,2]時(shí),f(x)≤g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,經(jīng)過(guò)村莊A有兩條夾角為60°的公路AB,AC,根據(jù)規(guī)劃擬在兩條公路之間的區(qū)域內(nèi)建一工廠P,分別在兩條公路邊上建兩個(gè)倉(cāng)庫(kù)M、N (異于村莊A),要求PMPNMN2(單位:千米).如何設(shè)計(jì), 可以使得工廠產(chǎn)生的噪聲對(duì)居民的影響最小(即工廠與村莊的距離最遠(yuǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= sin(x+ )﹣ cos(x+ ),若存在x1 , x2 , x3 , …,xn滿足0≤x1<x2<x3<…<xn≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+… ,則n的最小值為(
A.6
B.10
C.8
D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C的方程:和直線l的方程:,點(diǎn)P是圓C上動(dòng)點(diǎn),直線l與兩坐標(biāo)軸交于A、B兩點(diǎn).

(1)求與圓C相切且垂直于直線l的直線方程;

(2)求面積的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}滿足2nan+1=(n+1)an , 其前n項(xiàng)和為Sn , 若 ,則使得 最小的n值為(
A.8
B.9
C.10
D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) ,若函數(shù) 處與直線 相切.
(Ⅰ)求實(shí)數(shù) 的值;
(Ⅱ)求函數(shù) 上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l與拋物線y2=4x相交于不同的A、B兩點(diǎn).
(1)如果直線l過(guò)拋物線的焦點(diǎn),求 · 的值;
(2)如果 · =-4,證明直線l必過(guò)一定點(diǎn),并求出該定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案