【題目】已知函數f(x)= sin(x+ )﹣ cos(x+ ),若存在x1 , x2 , x3 , …,xn滿足0≤x1<x2<x3<…<xn≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+… ,則n的最小值為( )
A.6
B.10
C.8
D.12
科目:高中數學 來源: 題型:
【題目】如圖,在直角梯形ABCP中,CP∥AB,CP⊥CB,AB=BC= CP=2,D是CP中點,將△PAD沿AD折起,使得PD⊥面ABCD;
(Ⅰ)求證:平面PAD⊥平面PCD;
(Ⅱ)若E是PC的中點.求三棱錐A﹣PEB的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解某社區(qū)居民購買水果和牛奶的年支出費用與購買食品的年支出費用的關系,隨機調查了該社區(qū)5戶家庭,得到如下統計數據表:
購買食品的年支出費用x(萬元) | 2.09 | 2.15 | 2.50 | 2.84 | 2.92 |
購買水果和牛奶的年支出費用y(萬元) | 1.25 | 1.30 | 1.50 | 1.70 | 1.75 |
根據上表可得回歸直線方程 ,其中 ,據此估計,該社區(qū)一戶購買食品的年支出費用為3.00萬元的家庭購買水果和牛奶的年支出費用約為( )
A.1.79萬元
B.2.55萬元
C.1.91萬元
D.1.94萬元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知 ,函數 .
(1)當 時,解不等式 ;
(2)若關于 的方程 的解集中恰好有一個元素,求 的取值范圍;
(3)設 ,若對任意 ,函數 在區(qū)間 上的最大值與最小值的差不超過1,求 的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是數列的前n項和,,且.
(1)求數列的通項公式;
(2)對于正整數,已知成等差數列,求正整數的值;
(3)設數列前n項和是,且滿足:對任意的正整數n,都有等式成立.求滿足等式的所有正整數n.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知的頂點坐標為,,, 點P的橫坐標為14,且,點是邊上一點,且.
(1)求實數的值及點、的坐標;
(2)若為線段(含端點)上的一個動點,試求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,函數.
(1)當時,解不等式;
(2)若關于的方程的解集中恰好有一個元素,求的取值范圍;
(3)設,若對任意,函數在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com