【題目】如圖,經(jīng)過村莊A有兩條夾角為60°的公路AB,AC,根據(jù)規(guī)劃擬在兩條公路之間的區(qū)域內(nèi)建一工廠P,分別在兩條公路邊上建兩個(gè)倉庫M、N (異于村莊A),要求PM=PN=MN=2(單位:千米).如何設(shè)計(jì), 可以使得工廠產(chǎn)生的噪聲對居民的影響最。垂S與村莊的距離最遠(yuǎn)).
【答案】當(dāng)為時(shí),工廠產(chǎn)生的噪聲對居民的影響最小。
【解析】試題分析:根據(jù)題意,設(shè),則,在中,根據(jù)正弦定理得:,整理得:,那么在中,由余弦定理得:,又因?yàn)?/span>,所以代入上式得:,從而得到關(guān)于變量的函數(shù)關(guān)系式,最后通過化簡整理得到關(guān)于的正弦型函數(shù),再求的最大值,從而求出的最大值。本題考查解三角形的實(shí)際應(yīng)用,主要是研究圖形,利用題中的已知條件,將正弦、余弦定理應(yīng)用在解題中?疾閷W(xué)生對知識的綜合運(yùn)用能力。
試題解析:設(shè),在中,.
因?yàn)?/span>,所以.
在中,.
當(dāng)且僅當(dāng),即時(shí),取得最大值12,即取得最大值.
答:設(shè)為時(shí),工廠產(chǎn)生的噪聲對居民的影響最。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對30名六年級學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表(平均每天喝500ml以上為常喝,體重超過50kg為肥胖):
常喝 | 不常喝 | 合計(jì) | |
肥胖 | 2 | ||
不肥胖 | 18 | ||
合計(jì) | 30 |
已知在全部30人中隨機(jī)抽取1人,抽到肥胖的學(xué)生的概率為 .
(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.5%的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān)?說明你的理由;
(3)現(xiàn)從常喝碳酸飲料且肥胖的學(xué)生中(2名女生),抽取2人參加電視節(jié)目,則正好抽到一男一女的概率是多少
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:K2= ,其中n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,點(diǎn) ,圓F2:x2+y2﹣2 x﹣13=0,以動點(diǎn)P為圓心的圓經(jīng)過點(diǎn)F1 , 且圓P與圓F2內(nèi)切.
(1)求動點(diǎn)的軌跡的方程;
(2)若直線l過點(diǎn)(1,0),且與曲線E交于A,B兩點(diǎn),則在x軸上是否存在一點(diǎn)D(t,0)(t≠0),使得x軸平分∠ADB?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體 中, 是 的中點(diǎn), 在 上,且 ,點(diǎn) 是側(cè)面 (包括邊界)上一動點(diǎn),且 平面 ,則 的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ,函數(shù) .
(1)當(dāng) 時(shí),解不等式 ;
(2)若關(guān)于 的方程 的解集中恰好有一個(gè)元素,求 的取值范圍;
(3)設(shè) ,若對任意 ,函數(shù) 在區(qū)間 上的最大值與最小值的差不超過1,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()的離心率為,橢圓與軸交于兩點(diǎn),且.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)是橢圓上的一個(gè)動點(diǎn),且點(diǎn)在軸的右側(cè),直線與直線交于兩點(diǎn),若以為直徑的圓與軸交于,求點(diǎn)橫坐標(biāo)的取值范圍及的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(ωx+)﹣1(ω>0,|φ|<π)的一個(gè)零點(diǎn)是 ,其圖象上一條對稱軸方程為 ,則當(dāng)ω取最小值時(shí),下列說法正確的是 . (填寫所有正確說法的序號) ①當(dāng) 時(shí),函數(shù)f(x)單調(diào)遞增;
②當(dāng) 時(shí),函數(shù)f(x)單調(diào)遞減;
③函數(shù)f(x)的圖象關(guān)于點(diǎn) 對稱;
④函數(shù)f(x)的圖象關(guān)于直線 對稱.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=BC=2,∠ABC=90°,DA=DC= .現(xiàn)沿對角線AC折起,使得平面DAC⊥平面ABC,此時(shí)點(diǎn)A,B,C,D在同一個(gè)球面上,則該球的體積是( )
A.
B.
C.
D.12π
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com