如圖,正方形ABCD內(nèi)接于橢圓=1(a>b>0),且它的四條邊與坐標軸平行,正方形MNPQ的頂點M、N在橢圓上,頂點P、Q在正方形的邊AB上,且A、M都在第一象限.
 
(1)若正方形ABCD的邊長為4,且與y軸交于E、F兩點,正方形MNPQ的邊長為2.
①求證:直線AM與△ABE的外接圓相切;
②求橢圓的標準方程;
(2)設(shè)橢圓的離心率為e,直線AM的斜率為k,求證:2e2-k是定值.
(1)①見解析②=1(2)見解析
(1)證明:①依題意:A(2,2),M(4,1),E(0,-2),∴=(2,-1),=(-2,-4),∴·=0,∴AM⊥AE.
∵AE為Rt△ABE外接圓直徑,∴直線AM與△ABE的外接圓相切.
②解:由解得橢圓標準方程為=1.
(2)證明:設(shè)正方形ABCD的邊長為2s,正方形MNPQ的邊長為2t,則A(s,s),M(s+2t,t),代入橢圓方程=1,得 
∴e2=1-.∵k=,∴2e2-k=2為定值.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓=1(a>b>0)的離心率為,短軸的一個端點為M(0,1),直線l:y=kx-與橢圓相交于不同的兩點A、B.
(1)若AB=,求k的值;
(2)求證:不論k取何值,以AB為直徑的圓恒過點M.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若點P為共焦點的橢圓和雙曲線的一個交點,分別是它們的左右焦點.設(shè)橢圓離心率為,雙曲線離心率為,若,則(    )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若兩曲線在交點P處的切線互相垂直,則稱該兩曲線在點P處正交,設(shè)橢圓與雙曲線在交點處正交,則橢圓的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

雙曲線C與橢圓=1有相同的焦點,直線y=x為C的一條漸近線.求雙曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,橢圓C:=1(a>b>0)的左焦點為F,右頂點為A,動點M為右準線上一點(異于右準線與x軸的交點),設(shè)線段FM交橢圓C于點P,已知橢圓C的離心率為,點M的橫坐標為.

(1)求橢圓C的標準方程;
(2)設(shè)直線PA的斜率為k1,直線MA的斜率為k2,求k1·k2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓=1(a>b>0),F(xiàn)1、F2分別為橢圓的左、右焦點,A為橢圓的上頂點,直線AF2交橢圓于另一點B.

(1)若∠F1AB=90°,求橢圓的離心率;
(2)若=2,·,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C1:+=1(a>b>0)的右頂點為A(1,0),過C1的焦點且垂直長軸的弦長為1.

(1)求橢圓C1的方程;
(2)設(shè)點P在拋物線C2:y=x2+h(h∈R)上,C2在點P處的切線與C1交于點M,N.當線段AP的中點與MN的中點的橫坐標相等時,求h的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

方程=1表示橢圓,則k的取值范圍是________.

查看答案和解析>>

同步練習冊答案