若點(diǎn)P為共焦點(diǎn)的橢圓和雙曲線的一個(gè)交點(diǎn),分別是它們的左右焦點(diǎn).設(shè)橢圓離心率為,雙曲線離心率為,若,則(    )
A.4B.3C.2D.1
C

試題分析:由題設(shè)中的條件,設(shè)焦距為2c,橢圓的長軸長2a,雙曲線的實(shí)軸長為2m,根據(jù)橢圓和雙曲線的性質(zhì)以及勾弦定理建立方程,聯(lián)立可得m,a,c的等式,整理即可得到結(jié)論,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的焦距為,過右焦點(diǎn)和短軸一個(gè)端點(diǎn)的直線的斜率為,為坐標(biāo)原點(diǎn).
(1)求橢圓的方程.
(2)設(shè)斜率為的直線相交于兩點(diǎn),記面積的最大值為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的由頂點(diǎn)為A,右焦點(diǎn)為F,直線與x軸交于點(diǎn)B且與直線交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),,過點(diǎn)F的直線與橢圓交于不同的兩點(diǎn)M,N.

(1)求橢圓的方程;
(2)求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)A1、A2與B分別是橢圓E:=1(a>b>0)的左、右頂點(diǎn)與上頂點(diǎn),直線A2B與圓C:x2+y2=1相切.
(1)求證:=1;
(2)P是橢圓E上異于A1、A2的一點(diǎn),若直線PA1、PA2的斜率之積為-,求橢圓E的方程;
(3)直線l與橢圓E交于M、N兩點(diǎn),且·=0,試判斷直線l與圓C的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形ABCD內(nèi)接于橢圓=1(a>b>0),且它的四條邊與坐標(biāo)軸平行,正方形MNPQ的頂點(diǎn)M、N在橢圓上,頂點(diǎn)P、Q在正方形的邊AB上,且A、M都在第一象限.
 
(1)若正方形ABCD的邊長為4,且與y軸交于E、F兩點(diǎn),正方形MNPQ的邊長為2.
①求證:直線AM與△ABE的外接圓相切;
②求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的離心率為e,直線AM的斜率為k,求證:2e2-k是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是橢圓,上除頂點(diǎn)外的一點(diǎn),是橢圓的左焦點(diǎn),若 則點(diǎn)到該橢圓左焦點(diǎn)的距離為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓的焦點(diǎn)分別為,弦過點(diǎn),則的周長為
A.B.C.8D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在同一坐標(biāo)系中,方程的曲線大致是( )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點(diǎn)O和點(diǎn)F分別為橢圓的中心和左焦點(diǎn),點(diǎn)P為橢圓上的任意一點(diǎn),則的最大值為(   )
A.2
B.3
C.6
D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案