分析 先求出兩本書隨機給甲、乙、丙三人的所有情況,再求出甲拿到的書的數(shù)目分別是0,1,2的情況及其概率,進而即可得出數(shù)學期望.
解答 解:兩本書隨機給甲、乙、丙三人,共有32=9種情況.
則甲拿到的書的數(shù)目ξ的概率P(ξ=2)=$\frac{{C}_{2}^{2}}{9}$=$\frac{1}{9}$,P(ξ=1)=$\frac{{C}_{2}^{1}{C}_{2}^{1}}{9}$=$\frac{4}{9}$,
∴P(ξ=0)=1-P(ξ=2)-P(ξ=1)=$\frac{4}{9}$.
∴Eξ=0+1×$\frac{4}{0}$+2×$\frac{1}{9}$=$\frac{2}{3}$.
故答案為:$\frac{2}{3}$.
點評 熟練掌握乘法原理、古典概型的概率計算公式、離散型隨機變量的期望的計算公式是解題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若α∥β,m?α,n?β,則m∥n | |
B. | 若m,n?α,m∥β,n∥β,則α∥β | |
C. | m,n是異面直線,若m∥α,m∥β,n∥β,則α∥β | |
D. | 若α∥β,m∥α,則m∥β |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 當AE⊥PB時,△AEF-定為直角三角形 | |
B. | 當AF⊥PC時,△AEF-定為直角三角形 | |
C. | 當EF∥平面ABC時,△AEF-定為直角三角形 | |
D. | 當PC⊥平面AEF時,△AEF-定為直角三角形 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com