【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為,在同一平面直角坐標(biāo)系中,將曲線上的點按坐標(biāo)變換得到曲線,以原點為極點, 軸的正半軸為極軸,建立極坐標(biāo)系.

)求曲線的極坐標(biāo)方程;

)若過點(極坐標(biāo))且傾斜角為的直線與曲線交于兩點,弦的中點為,求的值.

【答案】(1)曲線的極坐標(biāo)方程為(2)

【解析】試題分析:(I)曲線C的參數(shù)方程為,利用平方關(guān)系即可化為普通方程.利用變換公式代入即可得出曲線C'的直角坐標(biāo)方程,利用互化公式可得極坐標(biāo)方程.

II的直角坐標(biāo)是,將的參數(shù)方程為參數(shù))代入曲線C'的直角坐標(biāo)方程可得,利用根與系數(shù)的關(guān)系即可得出.

試題解析:

,

,代入的普通方程可得,

,所以曲線的極坐標(biāo)方程為

的直角坐標(biāo)是,將的參數(shù)方程為參數(shù))

代入,可得

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,短軸的兩個端點分別為,點在橢圓上,且滿足,當(dāng)變化時,給出下列三個命題:

①點的軌跡關(guān)于軸對稱;②的最小值為2;

③存在使得橢圓上滿足條件的點僅有兩個,

其中,所有正確命題的序號是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}的前n項和為Sn,且滿足 (kR)

1)求k和數(shù)列{an}的通項公式;

2)若數(shù)列{bn}滿足bn,求數(shù)列{bn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國有十二生肖,又叫十二屬相,每一個人的出生年份對應(yīng)了十二種動物(鼠、牛、虎、兔、龍、蛇、馬、羊、猴、雞、狗、豬)的一種,現(xiàn)有十二生肖的吉物各一個,甲、乙、丙三位同學(xué)依次選一個作為禮物,甲同學(xué)喜歡牛和馬,乙同學(xué)喜歡牛、兔、狗和羊,丙同學(xué)哪個吉祥物都喜歡,如果讓三位同學(xué)選取的禮物都滿意,那么不同的選法有(  )

A. 50B. 60C. 70D. 90

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,,

(1)求證:平面;

(2)在棱上是否存在點,使得平面?若存在,確定點的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,分別為、的中點.

(1)證明:平面;

(2)已知與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域為R的偶函數(shù)滿足:對,,且當(dāng),若函數(shù)(0,+)上至少有三個零點,則實數(shù)的取值范圍為

A. 0,B. 0,C. 0,D. 0,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l過點A0,5)且與曲線x2+y25x0)相切于點B,則直線l的方程是_____,設(shè)E是線段OB中點,長度為的線段PQPQ的上方)在直線l上滑動,則|OP|+|EQ|的最小值是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,底面四邊形ABCD是菱形, 是邊長為2的等邊三角形, , .

求證: 底面ABCD;

求直線CP與平面BDF所成角的大。

在線段PB上是否存在一點M,使得平面BDF?如果存在,求的值,如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案