1.在△ABC中,D為邊BC上任意一點,$\overrightarrow{AD}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,則λμ的最大值為(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

分析 在△ABC中,D為邊BC上任意一點,$\overrightarrow{AD}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,由向量共線定理可得:λ+μ=1,λ,μ∈[0,1].再利用基本不等式的性質(zhì)即可得出.

解答 解:∵在△ABC中,D為邊BC上任意一點,$\overrightarrow{AD}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,
由向量共線定理可得:λ+μ=1,λ,μ∈[0,1].
則λμ≤$(\frac{λ+μ}{2})^{2}$=$\frac{1}{4}$,當且僅當λ=μ=$\frac{1}{2}$時取等號.
故選:D.

點評 本題考查了向量共線定理、基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

4.定義在(0,+∞)上的函數(shù)f(x)滿足f(x)>0,f'(x)為f(x)的導函數(shù),且2f(x)<xf'(x)<3f(x)對x∈(0,+∞)恒成立,則$\frac{f(2)}{f(3)}$的取值范圍是($\frac{8}{27}$,$\frac{4}{9}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在△ABC中,sinA+sinC=psinB(p∈R),且ac=$\frac{1}{4}$b2
(Ⅰ)當p=$\frac{5}{4}$,b=1時,求a,c的值;
(Ⅱ)若角B為銳角,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.執(zhí)行下面的程序,若輸入的x=2,則輸出的所有x的值的和為126.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知f(x)是R上的奇函數(shù),f(1)=2,且對任意x∈R都有f(x+6)=f(x)+f(3)成立,則f(3)=0;f(2013)=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.直線L過點M(2,1),且分別與X,Y正半軸軸交于A,B兩點.O為原點,
(1)求△AOB面積最小時直線L的方程
(2)|MA|•|MB|取最小值時L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知數(shù)列{an}是等差數(shù)列,若它的前n項和Sn有最小值,且$\frac{{a}_{2012}}{{a}_{2011}}$<-1,則使Sn>0成立的最小自然數(shù)n的值為(  )
A.4022B.2022C.4021D.2021

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.用分數(shù)指數(shù)冪表示$\sqrt{{a^{\frac{1}{2}}}\sqrt{{a^{\frac{1}{2}}}\sqrt{a}}}$(a>0)其結(jié)果是(  )
A.aB.${a^{\frac{1}{2}}}$C.${a^{\frac{1}{4}}}$D.${a^{\frac{1}{6}}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知f(x)=2sinxcosx+sin2x-cos2x,
(1)求f(x)的最小正周期;
(2)求f(x)的最大值及相應(yīng)x的取值集合.

查看答案和解析>>

同步練習冊答案