分析 分別構(gòu)造函數(shù)g(x)=$\frac{f(x)}{{x}^{2}}$,x∈(0,+∞),h(x)=$\frac{f(x)}{{x}^{3}}$,x∈(0,+∞),利用導(dǎo)數(shù)研究其單調(diào)性即可得出.
解答 解:令g(x)=$\frac{f(x)}{{x}^{2}}$,x∈(0,+∞),
g′(x)=$\frac{xf′(x)-2f(x)}{{x}^{3}}$,
∵?x∈(0,+∞),2f(x)<xf′(x)<3f(x)恒成立,
∴f(x)>0,
0<$\frac{xf′(x)-2f(x)}{{x}^{3}}$,
∴g′(x)>0,
∴函數(shù)g(x)在x∈(0,+∞)上單調(diào)遞增,
∴g(2)<g(3),即$\frac{f(2)}{4}$<$\frac{f(3)}{9}$,
∴$\frac{f(2)}{f(3)}$<$\frac{4}{9}$①,
令h(x)=$\frac{f(x)}{{x}^{3}}$,x∈(0,+∞),
h′(x)=$\frac{xf′(x)-3f(x)}{{x}^{4}}$,
∵?x∈(0,+∞),2f(x)<xf′(x)<3f(x)恒成立,
∴h′(x)=$\frac{xf′(x)-3f(x)}{{x}^{4}}$<0,
∴函數(shù)h(x)在x∈(0,+∞)上單調(diào)遞減,
∴h(2)>g(3),即$\frac{f(2)}{8}$>$\frac{f(3)}{27}$,
∴$\frac{f(2)}{f(3)}$>$\frac{8}{27}$②,
∴綜合①②:$\frac{8}{27}<\frac{f(2)}{f(3)}<\frac{4}{9}$,
故答案為:($\frac{8}{27}$,$\frac{4}{9}$).
點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究其單調(diào)性極值與最值、構(gòu)造函數(shù)法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 矩形的平行投影一定是矩形 | |
B. | 梯形的平行投影一定是梯形 | |
C. | 兩條相交直線的投影可能平行 | |
D. | 一條線段中點(diǎn)的平行投影仍是這條線段投影的中點(diǎn) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
X | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 奇函數(shù)非偶函數(shù) | B. | 偶函數(shù)非奇函數(shù) | ||
C. | 既是奇函數(shù)又是偶函數(shù) | D. | 既非偶函數(shù)又非奇函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com