14.某高中地處市區(qū),學(xué)校規(guī)定家到學(xué)校的路程在10里以內(nèi)的學(xué)生可以走讀,因交通便利,所以走讀生人數(shù)很多.該校學(xué)生會(huì)先后5次對(duì)走讀生的午休情況作了統(tǒng)計(jì),得到如下資料:
①若把家到學(xué)校的距離分為五個(gè)區(qū)間:[0,2)、[2,4)、[4,6)、[6,8)、[8,10),午休的走讀生的分布情況如頻率分布直方圖所示;
②走讀生是否午休與下午開始上課的時(shí)間有著密切的關(guān)系. 5次調(diào)查結(jié)果的統(tǒng)計(jì)表如表:
下午開始
上課時(shí)間
2:102:202:302:402:50
平均每天
午休人數(shù)
250350500650750
(1)若隨機(jī)地調(diào)查一位午休的走讀生,估計(jì)家到學(xué)校的路程(單位:里)在[2,6)的概率是多少?
(2)如果把下午開始上課時(shí)間2:10作為橫坐標(biāo)0,然后上課時(shí)間每推遲10分鐘,橫坐標(biāo)x增加1,并以平均每天午休人數(shù)作為縱坐標(biāo)y,試列出x與y的統(tǒng)計(jì)表,并根據(jù)表中的數(shù)據(jù)求平均每天午休人數(shù)$\widehat{y}$與上課時(shí)間x之間的線性回歸方程$\widehat{y}$=bx+a;
(3)預(yù)測(cè)當(dāng)下午上課時(shí)間推遲到3:00時(shí),家距學(xué)校的路程在6里路以上的走讀生中約有多少人午休?
(注:線性回歸直線方程系數(shù)公式b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.)

分析 (1)根據(jù)所給的頻率分步直方圖看出這組數(shù)據(jù)對(duì)應(yīng)的小正方形的長(zhǎng)和寬,做出面積就是要求的概率.
(2)根據(jù)題意寫出統(tǒng)計(jì)表,用統(tǒng)計(jì)表中的數(shù)據(jù)求出橫標(biāo)和縱標(biāo)的平均數(shù),利用最小二乘法做出線性回歸方程的系數(shù),寫出線性回歸方程.
(3)根據(jù)第二問做出的線性回歸方程,預(yù)測(cè)家距學(xué)校的路程在6里路以上的走讀生中約有133人午休.

解答 解:(1)所求概率P=2(0.15+0.2)=0.7.….…(3分)
(2)根據(jù)題意,可得如下表格:

x01234
y250350500650750
….(4分)
則$\overline{x}$=2,$\overline{y}$=500,
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{2×250+1×150+2×250}{4+1+1+4}$=130,…(8分)
再由a=$\overline{y}$-$\widehat$$\overline{x}$,得:a=240,
∴線性回歸方程為$\widehat{y}$=130x+240…..…(10分)
(3)下午上課時(shí)間推遲到3:00時(shí),x=5,$\widehat{y}$=890,
890(0.05+0.025)×2=133.5
此時(shí),家距學(xué)校的路程在6里路以上的走讀生中約有133(134)人午休.….(12分)

點(diǎn)評(píng) 本題考查統(tǒng)計(jì)的綜合應(yīng)用問題,利用最小二乘法求線性回歸方程及線性回歸方程的應(yīng)用,頻率分布直方圖的應(yīng)用,概率公式,考查的知識(shí)點(diǎn)比較全面的題目,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)$f(x)=1+x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+…-\frac{{{x^{2016}}}}{2016}$(其中x>0),g(x)=lnx+x-3,設(shè)函數(shù)F(x)=f(x-1)g(x+1),且函數(shù)F(x)的零點(diǎn)都在區(qū)間[a,b](a<b,a∈Z,b∈Z)內(nèi),則b-a的最小值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求由三條曲線:y=x2,y=$\frac{1}{3}$x2,y=2 所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知命題p:“x>1”,命題q:“$\frac{1}{x}$<1”,則p是q的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,角A為鈍角,且sinA=$\frac{3}{5}$,點(diǎn)P、Q分別是在角A的兩邊上不同于點(diǎn)A的動(dòng)點(diǎn).
(1)若AP=5,PQ=3$\sqrt{5}$,求AQ的長(zhǎng);
(2)設(shè)∠APQ=α,∠AQP=β,且cosα=$\frac{12}{13}$,求cos(α+β)和cos(2α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.45和80的等比中項(xiàng)為±60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在公差為d的等差數(shù)列{an}中,已知a1=10,5a1a3=(2a2+2)2
(Ⅰ)求d和an的值;           
(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|a2021|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知p:-4<x-a<4,q:(x-1)(2-x)>0,若¬p是¬q的充分條件,則實(shí)數(shù)a的取值范圍是[-2,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=2sin(ωx+$\frac{π}{6}$)(ω>0)的最小正周期為π,則ω=2,f($\frac{π}{3}$)=1,在(0,π)內(nèi)滿足f(x0)=2的x0=$\frac{π}{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案