12.已知向量$\overrightarrow{a}$=(k2,k+1),$\overrightarrow$=(k,4),若$\overrightarrow{a}$∥$\overrightarrow$,則實數(shù)k值是0或$\frac{1}{3}$.

分析 由向量平行可得k的方程,解方程可得.

解答 解:∵向量$\overrightarrow{a}$=(k2,k+1),$\overrightarrow$=(k,4)且$\overrightarrow{a}$∥$\overrightarrow$,
∴4k2=k(k+1),整理可得k(3k-1)=0,
解得k=0或k=$\frac{1}{3}$
故答案為:0或$\frac{1}{3}$

點評 本題考查平面向量的平行與共線,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.△ABC中,B=$\frac{π}{3}$,點D在邊AB上,BD=1,且DA=DC.
(Ⅰ)若△BCD的面積為$\sqrt{3}$,求CD;
(Ⅱ)若AC=$\sqrt{3}$,求∠DCA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知a>c>b>0,則對$\frac{a-b}{c}$+$\frac{b-c}{a}$+$\frac{c-a}$的符號判斷正確的是( 。
A.只取正號B.只取負(fù)號
C.可取正號,也可取負(fù)號D.可取正號,負(fù)號,也可取零

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某新建公司規(guī)定,招聘的職工須參加不小于80小時的某種技能培訓(xùn)才能上班.公司人事部門在招聘的職工中隨機抽取200名參加這種技能培訓(xùn)的數(shù)據(jù),按時間段[75,80),[80,85),[85,90),[90,95),[95,100](單位:小時)進(jìn)行統(tǒng)計,其頻率分布直方圖如圖所示.
(Ⅰ)求抽取的200名職工中,參加這種技能培訓(xùn)服務(wù)時間不少于90小時的人數(shù),并估計從招聘職工中任意選取一人,其參加這種技能培訓(xùn)時間不少于90小時的概率;
(Ⅱ)從招聘職工(人數(shù)很多)中任意選取3人,記X為這3名職工中參加這種技能培訓(xùn)時間不少于90小時的人數(shù).試求X的分布列和數(shù)學(xué)期望E(X)和方差D(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知離心率為$\frac{\sqrt{2}}{2}$的橢圓C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)與圓N:x2+(y-1)2=$\frac{1}{2}$的公共弦長為$\sqrt{2}$
(1)求橢圓C的方程;
(2)若橢圓C上存在兩個不同的點A,B關(guān)于過點M(-$\frac{2}$,0)且不與坐標(biāo)軸垂直的直線l對稱,O為坐標(biāo)原點,求△AOB面積的最大值,求此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列$\left\{{{a_n}-{2^n}}\right\}$為等差數(shù)列,且a1=8,a3=26.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在一種稱為“幸運35”的福利彩票中,規(guī)定從01,02,…,35這35個號碼中任選7個不同號碼組成一注.并通過搖獎機從這35個號碼中搖出7個不同的號碼作為特等獎,與特等獎號碼僅6個相同的為一等獎,僅5個相同的為二等獎,僅4個相同的為三等獎,其他的情況不得獎,為了便于計算,假定每個投注號只有1次中獎釩機(只計獎金額最大的獎).該期的每組號碼均有人買,且彩票無重復(fù)號碼,若每注彩票為2元,特等獎獎金為100萬元/注,一等獎獎金為1萬元/注,二等獎獎金為100元/注,三等獎獎金為10元/注.試求;
(1)獎金額X(元)的概率分布:;
(2)這一期彩票售完可以為福利事業(yè)籌集多少獎金?(不計發(fā)售彩票的費用).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x-4y+3≤0}\\{x+y-4≤0}\\{x≥1}\\{\;}\end{array}\right.$,則$\frac{xy}{{x}^{2}+{y}^{2}}$的最大值為( 。
A.$\frac{1}{2}$B.$\frac{91}{218}$C.$\frac{3}{10}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.現(xiàn)有一枚質(zhì)地均勻且表面分別標(biāo)有1、2、3、4、5、6的正方體骰子,將這枚骰子先后拋擲兩次,這兩次出現(xiàn)的點數(shù)之和大于點數(shù)之積的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{11}{36}$

查看答案和解析>>

同步練習(xí)冊答案