15.直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為圓心的圓與直線$y=x+2\sqrt{2}$相切.
(1)求圓O的方程;
(2)圓O與x軸交于A,B兩點(diǎn),圓內(nèi)動(dòng)點(diǎn)P,使得|PA|,|PO|,|PB|成等比數(shù)列,求$\overrightarrow{PA}•\overrightarrow{PB}$的取值范圍.

分析 (1)求出圓心O到直線l的距離得圓的半徑r,寫出圓的方程即可;
(2)設(shè)出點(diǎn)P的坐標(biāo),求出A、B的坐標(biāo),由PA,PO,PB成等比數(shù)列,得出x、y的關(guān)系式,再求$\overrightarrow{PA}•\overrightarrow{PB}$的取值范圍即可.

解答 解:(1)圓心到直線的距離為2,所以可得圓O的方程:x2+y2=4.…(4分)
(2)圓O與x軸交于A,B兩點(diǎn),則A(-2,0),B(2,0),設(shè)P(x,y),則
∵|PA|,|PO|,|PB|成等比數(shù)列,
∴${x^2}+{y^2}=\sqrt{{{({x+2})}^2}+{y^2}}\sqrt{{{({x-2})}^2}+{y^2}}$,即x2-y2=2,
∴$\overrightarrow{PA}•\overrightarrow{PB}={x^2}-4+{y^2}=2({{y^2}-1})$,
∵x2+y2<4且x2-y2=2,
∴0≤y2<1,
∴$\overrightarrow{PA}•\overrightarrow{PB}$的取值范圍為[-2,0).…(12分)

點(diǎn)評(píng) 本題考查了直線與圓的應(yīng)用問(wèn)題,也考查了平面向量的應(yīng)用問(wèn)題,考查了等比中項(xiàng)的應(yīng)用問(wèn)題,是綜合題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且$a=4,cosA=\frac{3}{4},sinB=\frac{{5\sqrt{7}}}{16},c>4$.
(1)求b;
(2)已知△ABC內(nèi)切圓的半徑$r=\frac{2S}{l}$,其中S為△ABC的面積,l為△ABC的周長(zhǎng),求△ABC內(nèi)切圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=lnx-x2+ax,
(1)當(dāng)x∈(1,+∞)時(shí),函數(shù)f(x)為遞減函數(shù),求a的取值范圍;
(2)設(shè)f'(x)是函數(shù)f(x)的導(dǎo)函數(shù),x1,x2是函數(shù)f(x)的兩個(gè)零點(diǎn),且x1<x2,求證$f'({\frac{{{x_1}+{x_2}}}{2}})<0$
(3)證明當(dāng)n≥2時(shí),$\frac{1}{ln2}+\frac{1}{ln3}+\frac{1}{ln4}+…+\frac{1}{lnn}>1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列四個(gè)命題中,其中真命題是(  )
①“若xy=1,則lgx+lgy=0”的逆命題;
②“若$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$,則$\overrightarrow{a}$⊥($\overrightarrow$-$\overrightarrow{c}$)”的否命題;
③“若b≤0,則方程x2-2bx+b2+b=0有實(shí)根”的逆否命題;
④“等邊三角形的三個(gè)內(nèi)角均為60°”的逆命題.
A.①②B.①②③④C.②③④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.一個(gè)容量為20的樣本數(shù)椐,分組后,組距與頻數(shù)如下:第1組:(10,20],2個(gè);第2組:(20,30],3個(gè);第3組:(30,40],4個(gè);第4組:(40,50],5個(gè);第5組:(50,60],4個(gè);第6組:(60,70],2個(gè).則樣本在區(qū)間[50,+∞)上的頻率為0.3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若橢圓$\frac{x^2}{16}+\frac{y^2}{8}=1$的弦被點(diǎn)(2,1)平分,則此弦所在的直線方程是( 。
A.x+y-3=0B.x+2y-4=0C.2x+13y-14=0D.x+2y-8=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.一動(dòng)圓與圓${F_1}:{(x+1)^2}+{y^2}=9$內(nèi)切,與圓${F_2}:{(x-1)^2}+{y^2}=1$外切.
(1)求動(dòng)圓圓心M的軌跡L的方程;
(2)設(shè)過(guò)圓心F2的直線l:x=my+1與軌跡L相交于A,B兩點(diǎn),請(qǐng)問(wèn)△ABF1的面積是否存在最大值?若存在,求出這個(gè)最大值及直線l的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若關(guān)于x的方程9x+(a+4)•3x+4=0有實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-8]∪[0,+∞)B.(-∞,-4)C.[-8,-4)D.(-∞,-8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,以原點(diǎn)為圓心,半徑為b的圓與直線y=x+$\sqrt{6}$相切.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知橢圓C的上頂點(diǎn)為B,過(guò)點(diǎn)B且互相垂直的動(dòng)直線l1,l2與橢圓的另一個(gè)交點(diǎn)分別為P,Q,設(shè)直線PQ與y軸相交于點(diǎn)M,若$\overrightarrow{PM}$=λ$\overrightarrow{MQ}$,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案