【題目】如圖,在地正西方向的處和正東方向的處各一條正北方向的公路和,現(xiàn)計(jì)劃在和路邊各修建一個(gè)物流中心和.
(1)若在處看,的視角,在處看測(cè)得,求,;
(2)為緩解交通壓力,決定修建兩條互相垂直的公路和,設(shè),公路的每千米建設(shè)成本為萬(wàn)元,公路的每千米建設(shè)成本為萬(wàn)元.為節(jié)省建設(shè)成本,試確定,的位置,使公路的總建設(shè)成本最小.
【答案】(1),;(2)當(dāng)為,且為時(shí),成本最。
【解析】
(1)根據(jù)等腰直角三角形的性質(zhì)得到,利用,以及的展開公式列方程,解方程求得的值.(2)利用表示出,由此求得總成本的表達(dá)式,利用導(dǎo)數(shù)求得為何值時(shí),總成本最小.
解:(1)在中,由題意可知,,則.
在中,,在中
因?yàn)?/span>,所以,
于是
所以
答:,
(2)在中,由題意可知,則.
同理在中,,則.
令,,
則,
令,得,記,,
當(dāng)時(shí),,單調(diào)減;
當(dāng)時(shí),,單調(diào)增.
所以時(shí),取得最小值,
此時(shí),.
所以當(dāng)為,且為時(shí),成本最小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】影響消費(fèi)水平的原因很多,其中重要的一項(xiàng)是工資收入.研究這兩個(gè)變量的關(guān)系的一個(gè)方法是通過(guò)隨機(jī)抽樣的方法,在一定范圍內(nèi)收集被調(diào)查者的工資收入和他們的消費(fèi)狀況.下面的數(shù)據(jù)是某機(jī)構(gòu)收集的某一年內(nèi)上海、江蘇、浙江、安徽、福建五個(gè)地區(qū)的職工平均工資與城鎮(zhèn)居民消費(fèi)水平(單位:萬(wàn)元).
地區(qū) | 上海 | 江蘇 | 浙江 | 安徽 | 福建 |
職工平均工資 | 9.8 | 6.9 | 6.4 | 6.2 | 5.6 |
城鎮(zhèn)居民消費(fèi)水平 | 6.6 | 4.6 | 4.4 | 3.9 | 3.8 |
(1)利用江蘇、浙江、安徽三個(gè)地區(qū)的職工平均工資和他們的消費(fèi)水平,求出線性回歸方程,其中,;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)1萬(wàn),則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)所得的線性回歸方程是否可靠?(的結(jié)果保留兩位小數(shù))
(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某“雙一流”大學(xué)專業(yè)獎(jiǎng)學(xué)金是以所學(xué)專業(yè)各科考試成績(jī)作為評(píng)選依據(jù),分為專業(yè)一等獎(jiǎng)學(xué)金(獎(jiǎng)金額元)、專業(yè)二等獎(jiǎng)學(xué)金(獎(jiǎng)金額元)及專業(yè)三等獎(jiǎng)學(xué)金(獎(jiǎng)金額元),且專業(yè)獎(jiǎng)學(xué)金每個(gè)學(xué)生一年最多只能獲得一次.圖(1)是統(tǒng)計(jì)了該校年名學(xué)生周課外平均學(xué)習(xí)時(shí)間頻率分布直方圖,圖(2)是這名學(xué)生在年周課外平均學(xué)習(xí)時(shí)間段獲得專業(yè)獎(jiǎng)學(xué)金的頻率柱狀圖.
(Ⅰ)求這名學(xué)生中獲得專業(yè)三等獎(jiǎng)學(xué)金的人數(shù);
(Ⅱ)若周課外平均學(xué)習(xí)時(shí)間超過(guò)小時(shí)稱為“努力型”學(xué)生,否則稱為“非努力型”學(xué)生,列聯(lián)表并判斷是否有的把握認(rèn)為該校學(xué)生獲得專業(yè)一、二等獎(jiǎng)學(xué)金與是否是“努力型”學(xué)生有關(guān)?
(Ⅲ)若以頻率作為概率,從該校任選一名學(xué)生,記該學(xué)生年獲得的專業(yè)獎(jiǎng)學(xué)金額為隨機(jī)變量,求隨機(jī)變量的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),在內(nèi)是否存在一實(shí)數(shù),使成立?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校高三年級(jí)有學(xué)生500人,其中男生300人,女生200人,為了研究學(xué)生的數(shù)學(xué)成績(jī)是否與性別有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們期中考試的數(shù)學(xué)分?jǐn)?shù),然后按性別分為男、女兩組,再將兩組學(xué)生的分?jǐn)?shù)分成5組:[100,110),[110,120),[120,130),[130,140),[140,150]分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(1)從樣本中分?jǐn)?shù)小于110分的學(xué)生中隨機(jī)抽取2人,求兩人恰好為一男一女的概率;
(2)若規(guī)定分?jǐn)?shù)不小于130分的學(xué)生為“數(shù)學(xué)尖子生”,請(qǐng)你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“數(shù)學(xué)尖子生與性別有關(guān)”?
附:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中老年人群體中,腸胃病是一種高發(fā)性疾病某醫(yī)學(xué)小組為了解腸胃病與運(yùn)動(dòng)之間的聯(lián)系,調(diào)查了50位中老年人每周運(yùn)動(dòng)的總時(shí)長(zhǎng)(單位:小時(shí)),將數(shù)據(jù)分成[0,4),[4,8),[8,14),[14,16),[16,20),[20,24]6組進(jìn)行統(tǒng)計(jì),并繪制出如圖所示的柱形圖.
圖中縱軸的數(shù)字表示對(duì)應(yīng)區(qū)間的人數(shù)現(xiàn)規(guī)定:每周運(yùn)動(dòng)的總時(shí)長(zhǎng)少于14小時(shí)為運(yùn)動(dòng)較少.
每周運(yùn)動(dòng)的總時(shí)長(zhǎng)不少于14小時(shí)為運(yùn)動(dòng)較多.
(1)根據(jù)題意,完成下面的2×2列聯(lián)表:
有腸胃病 | 無(wú)腸胃病 | 總計(jì) | |
運(yùn)動(dòng)較多 | |||
運(yùn)動(dòng)較少 | |||
總計(jì) |
(2)能否有99.9%的把握認(rèn)為中老年人是否有腸胃病與運(yùn)動(dòng)有關(guān)?
附:K2(n=a+b+c+d)
P(K2≥k) | 0.0.50 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某家電公司銷售部門共有200位銷售員,每位部門對(duì)每位銷售員都有1400萬(wàn)元的年度銷售任務(wù),已知這200位銷售員去年完成銷售額都在區(qū)間(單位:百萬(wàn)元)內(nèi),現(xiàn)將其分成5組,第1組,第2組,第3組,第4組,第5組對(duì)應(yīng)的區(qū)間分別為, , , , ,繪制出頻率分布直方圖.
(1)求的值,并計(jì)算完成年度任務(wù)的人數(shù);
(2)用分層抽樣從這200位銷售員中抽取容量為25的樣本,求這5組分別應(yīng)抽取的人數(shù);
(3)現(xiàn)從(2)中完成年度任務(wù)的銷售員中隨機(jī)選取2位,獎(jiǎng)勵(lì)海南三亞三日游,求獲得此獎(jiǎng)勵(lì)的2位銷售員在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形中,,點(diǎn)是中點(diǎn),且,現(xiàn)將三角形沿折起,使點(diǎn)到達(dá)點(diǎn)的位置,且與平面所成的角為.
(1)求證:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com