【題目】在中老年人群體中,腸胃病是一種高發(fā)性疾病某醫(yī)學(xué)小組為了解腸胃病與運動之間的聯(lián)系,調(diào)查了50位中老年人每周運動的總時長(單位:小時),將數(shù)據(jù)分成[0,4),[4,8),[8,14),[14,16),[16,20),[20,24]6組進(jìn)行統(tǒng)計,并繪制出如圖所示的柱形圖.
圖中縱軸的數(shù)字表示對應(yīng)區(qū)間的人數(shù)現(xiàn)規(guī)定:每周運動的總時長少于14小時為運動較少.
每周運動的總時長不少于14小時為運動較多.
(1)根據(jù)題意,完成下面的2×2列聯(lián)表:
有腸胃病 | 無腸胃病 | 總計 | |
運動較多 | |||
運動較少 | |||
總計 |
(2)能否有99.9%的把握認(rèn)為中老年人是否有腸胃病與運動有關(guān)?
附:K2(n=a+b+c+d)
P(K2≥k) | 0.0.50 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
【答案】(1)列聯(lián)表見解析; (2) 有99.9%的把握認(rèn)為中老年人是否有腸胃病與運動有關(guān)
【解析】
(1)由柱形圖計算得出對應(yīng)數(shù)據(jù),再填寫列聯(lián)表;(2)根據(jù)表中數(shù)據(jù)計算K2,對照數(shù)表得出結(jié)論.
(1)由柱形圖可知,有腸胃病的老年人中運動較少的人數(shù)為12+10+8=30,
運動較多的人數(shù)為2+1+1=4;
無腸胃病的老年人中運動較少的人數(shù)為3+2+1=6,
運動較多的人數(shù)為2+4+4=10.
故2×2列聯(lián)表如下:
有腸胃病 | 無腸胃病 | 總計 | |
運動較多 | 4 | 10 | 14 |
運動較少 | 30 | 6 | 36 |
總計 | 34 | 16 | 50 |
(2).
故有99.9%的把握認(rèn)為中老年人是否有腸胃病與運動有關(guān)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)若,是不等式成立的必要不充分條件,求實數(shù)的取值范圍;
(2)已知集合,.若“”是“”的充分條件,求實數(shù)的取值范圍;
(3)已知命題“,”的否定為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長軸長為,焦距為2,拋物線的準(zhǔn)線經(jīng)過的左焦點.
(1)求與的方程;
(2)直線經(jīng)過的上頂點且與交于,兩點,直線,與分別交于點(異于點),(異于點),證明:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在地正西方向的處和正東方向的處各一條正北方向的公路和,現(xiàn)計劃在和路邊各修建一個物流中心和.
(1)若在處看,的視角,在處看測得,求,;
(2)為緩解交通壓力,決定修建兩條互相垂直的公路和,設(shè),公路的每千米建設(shè)成本為萬元,公路的每千米建設(shè)成本為萬元.為節(jié)省建設(shè)成本,試確定,的位置,使公路的總建設(shè)成本最小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】阿波羅尼斯(約公元前年)證明過這樣一個命題:平面內(nèi)到兩定點距離之比為常數(shù)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.若平面內(nèi)兩定點、間的距離為,動點滿足,則的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,.
(1)令,求證:有唯一的極值點;
(2)若點為函數(shù)上的任意一點,點為函數(shù)上的任意一點,求、兩點之間距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓兩焦點分別為、,且離心率;
(1)設(shè)E是直線與橢圓的一個交點,求取最小值時橢圓的方程;
(2)已知,是否存在斜率為k的直線l與(1)中的橢圓交于不同的兩點A、B,使得點N在線段AB的垂直平分線上,若存在,求出直線l在y軸上截距的范圍;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(ω>0)的最小正周期為π.
(Ⅰ)求ω的值和f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若關(guān)于x的方程f(x)﹣m=0在區(qū)間[0,]上有兩個實數(shù)解,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com