5.已知函數(shù)f(x)=loga(x+2)-loga(2-x),a>0且a≠1.
(Ⅰ)判斷f(x)的奇偶性,并予以證明
(Ⅱ)求關(guān)于x的不等式f(x)>0的解集.

分析 (Ⅰ)f(x)為奇函數(shù),利用奇函數(shù)的定義予以證明
(Ⅱ)分類討論,轉(zhuǎn)化為具體不等式,即可求關(guān)于x的不等式f(x)>0的解集.

解答 解:(Ⅰ)f(x)為奇函數(shù).
證明如下:f(x)的定義域?yàn)閧x|-2<x<2},且
f(-x)=loga(-x+2)-loga(2+x)
=-[loga(x+2)-loga(2-x)]
=-f(x).故f(x)為奇函數(shù).                       (6分)
(Ⅱ)當(dāng)a>1時(shí),f(x)在定義域{x|-2<x<2}上是增函數(shù),
所以f(x)>0?$\frac{x+2}{2-x}>1$.解得0<x<2.
所以使f(x)>0的x的取值集合是{x|0<x<2}.
當(dāng)0<a<1時(shí),f(x)在定義域{x|-2<x<2}上是減函數(shù),
所以f(x)>0?$0<\frac{x+2}{2-x}<1$.解得-2<x<0.
所以使f(x)>0的x的取值集合是{x|-2<x<0}.                               (12分)

點(diǎn)評(píng) 本題考查函數(shù)的性質(zhì),考查不等式的解法,考查分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知集合M={1,3,4},N={x|x2-4x+3=0},則M∩N=( 。
A.{3,4}B.{1,4}C.{1,3}D.{3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.將函數(shù)y=cos(x-$\frac{π}{3}$)的圖象上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再向左平移$\frac{π}{6}$個(gè)單位,所得函數(shù)圖象的一條對(duì)稱軸是( 。
A.x=$\frac{π}{4}$B.x=$\frac{π}{6}$C.x=πD.x=$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-4,x>2}\\{\sqrt{-{x}^{2}+2x},0≤x≤2}\end{array}\right.$若F(x)=f(x)-kx-3k在其定義域內(nèi)有3個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是(0,$\frac{\sqrt{15}}{15}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,以F1F2為直徑的圓與雙曲線左支的一個(gè)交點(diǎn)為P,若以O(shè)F1(O為坐標(biāo)原點(diǎn))為直徑的圓與PF2相切,則雙曲線C的離心率為(  )
A.$\sqrt{2}$B.$\frac{-3+6\sqrt{2}}{4}$C.$\sqrt{3}$D.$\frac{3+6\sqrt{2}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知不過(guò)坐標(biāo)原點(diǎn)的動(dòng)直線l與拋物線y2=4x交于P,Q兩點(diǎn),若以PQ為直徑的圓橫過(guò)坐標(biāo)原點(diǎn)O,則直線l在x軸上的截距為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某籃球隊(duì)與其他6支籃球隊(duì)依次進(jìn)行6場(chǎng)比賽,每場(chǎng)均決出勝負(fù),設(shè)這支籃球隊(duì)與其他籃球隊(duì)比賽勝場(chǎng)的事件是獨(dú)立的,并且勝場(chǎng)的概率是$\frac{1}{3}$.
(1)求這支籃球隊(duì)首次勝場(chǎng)前已經(jīng)負(fù)了兩場(chǎng)的概率;
(2)求這支籃球隊(duì)在6場(chǎng)比賽中恰好勝了3場(chǎng)的概率;
(3)求這支籃球隊(duì)在6場(chǎng)比賽中勝場(chǎng)數(shù)的期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知函數(shù) f(x)=$\frac{a}{x}$+xlnx,g(x)=x3-x2-5,若對(duì)任意的x1,x2∈[$\frac{1}{2}$,2],都有f(x1)-g(x2)≥2成立,則a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.兩位同學(xué)約定下午5:30~6:00在圖書(shū)館見(jiàn)面,且他們?cè)?:30~6:00之間到達(dá)的時(shí)刻是等可能的,先到的同學(xué)須等待,15分鐘后還未見(jiàn)面便離開(kāi),則兩位同學(xué)能夠見(jiàn)面的概率是(  )
A.$\frac{11}{36}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案