【題目】高二數(shù)學(xué)期中測試中,為了了解學(xué)生的考試情況,從中抽取了個學(xué)生的成績(滿分為100分)進行統(tǒng)計.按照[50,60), [60,70), [70,80), [80,90), [90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出得分在[50,60), [90,100]的數(shù)據(jù)).
(1)求樣本容量和頻率分布直方圖中的值;
(2)在選取的樣本中,從成績是80分以上(含80分)的同學(xué)中隨機抽取3名參加志愿者活動,所抽取的3名同學(xué)中至少有一名成績在[90,100]內(nèi)的概率。.
【答案】(1)40,0.025,0.005 (2)
【解析】
試題分析:(Ⅰ)由樣本容量和頻數(shù)頻率的關(guān)系易得答案;(Ⅱ)由題意可知,分?jǐn)?shù)在[80,100)內(nèi)的學(xué)生有6人,分?jǐn)?shù)在[90,100]內(nèi)的學(xué)生有2人,結(jié)合古典概型概率公式和對立事件概率公式可求得至少有一名成績在[90,100]內(nèi)的概率
試題解析:(1)由題意可知,樣本容量,,
.……………………………6分
(2)由題意,分?jǐn)?shù)在內(nèi)的有4人,分?jǐn)?shù)在內(nèi)的有2人,成績是分以上(含分)的學(xué)生共6人.從而抽取的名同學(xué)中得分在的學(xué)生人數(shù)的所有可能的取值為.
,所以所求概率為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過點A(﹣2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點.
(1)求圓C的方程;
(2)若=﹣2,求實數(shù)k的值;
(3)過點(0,4)作動直線m交圓C于E,F(xiàn)兩點.試問:在以EF為直徑的所有圓中,是否存在這樣的圓P,使得圓P經(jīng)過點M(2,0)?若存在,求出圓P的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是平行四邊形,,,,面,設(shè)為中點,點在線段上,且.
(1)求證:平面;
(2)設(shè)異面直線與的夾角為,若,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ABC=60°,∠BAC=90°,AD是BC邊上的高,沿AD將△ABC折成60°的二面角B-AD-C,如圖2.
(1)證明:平面ABD⊥平面BCD;
(2)設(shè)E為BC的中點,BD=2,求異面直線AE與BD所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】水培植物需要一種植物專用營養(yǎng)液.已知每投放(且)個單位的營養(yǎng)液,它在水中釋放的濃度(克/升)隨著時間(天)變化的函數(shù)關(guān)系式近似為,其中,若多次投放,則某一時刻水中的營養(yǎng)液濃度為每次投放的營養(yǎng)液在相應(yīng)時刻所釋放的濃度之和,根據(jù)經(jīng)驗,當(dāng)水中營養(yǎng)液的濃度不低于4(克/升)時,它才能有效.
(1)若只投放一次4個單位的營養(yǎng)液,則有效時間可能達幾天?
(2)若先投放2個單位的營養(yǎng)液,3天后投放個單位的營養(yǎng)液.要使接下來的2天中,營養(yǎng)液能夠持續(xù)有效,試求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】語文成績服從正態(tài)分布,數(shù)學(xué)成績的頻率分布直方圖如下:
(I)如果成績大于135的為特別優(yōu)秀,這500名學(xué)生中本次考試語文、數(shù)學(xué)特別優(yōu)秀的大約各多少人?(假設(shè)數(shù)學(xué)成績在頻率分布直方圖中各段是均勻分布的)
(II)如果語文和數(shù)學(xué)兩科都特別優(yōu)秀的共有6人,從(I)中的這些同學(xué)中隨機抽取3人,設(shè)三人中兩科都特別優(yōu)秀的有人,求的分布列和數(shù)學(xué)期望.
(附參考公式)若,則,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生身高情況,某校以10%的比例對全校700名學(xué)生按性別進行分層抽樣調(diào)查,測得身高情況的統(tǒng)計圖如下:
(1)估計該校男生的人數(shù);
(2)估計該校學(xué)生身高在170~185cm之間的概率;
(3)從樣本中身高在180~190cm之間的男生中任選2人,求至少有1人身高在185~190cm之間的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,記二次函數(shù)()與兩坐標(biāo)軸有三個交點,其中與x軸的交點為A,B.經(jīng)過三個交點的圓記為.
(1)求圓的方程;
(2)設(shè)P為圓上一點,若直線PA,PB分別交直線于點M,N,則以MN為直徑的圓是否經(jīng)過線段AB上一定點?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點在原點,焦點在坐標(biāo)軸上,點為拋物線上一點.
(1)求的方程;
(2)若點在上,過作的兩弦與,若,求證: 直線過定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com