【題目】如圖,在三棱錐ABCD中,平面ABC⊥平面BCD,BACBCD均為等腰直角三角形,且∠BAC=BCD=90°,BC=2,點(diǎn)P是線段AB上的動(dòng)點(diǎn),若線段CD上存在點(diǎn)Q,使得異面直線PQAC30°的角,則線段PA長的取值范圍是(

A.0,B.[0,]C.D.,

【答案】B

【解析】

由于為動(dòng)點(diǎn),且錐體較為規(guī)則,可考慮建系法求解,設(shè)中點(diǎn)為,連接,以方向?yàn)?/span>軸,方向?yàn)?/span>軸,方向?yàn)?/span>軸,結(jié)合向量夾角的余弦公式及不等關(guān)系即可求解

如圖,由題可知,平面ABC⊥平面BCD,BACBCD均為等腰直角三角形,且∠BAC=BCD=90°,作中點(diǎn)為,連接,則,則平面,再作軸方向平行于,則,故可以為原點(diǎn),建立如圖所示空間直角坐標(biāo)系,,設(shè),,則,,,由于共線,故,所以

所以,

化簡得,又,代入化簡可得:,即,所以,則,即

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在中美組織的暑假中學(xué)生交流會結(jié)束時(shí),中方組織者將孫悟空、豬八戒、沙和尚、唐三藏、白龍馬的彩色陶俑各一個(gè)送給來中國參觀的美國中學(xué)生湯姆、杰克、索菲婭,每個(gè)人至少一個(gè),且豬八戒的彩色陶俑不能送給索菲婭,則不同的送法種數(shù)為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l與曲線C,)交于不同的兩點(diǎn)A,B,O為坐標(biāo)原點(diǎn).

1)若,求證:曲線C是一個(gè)圓;

2)若曲線C、,是否存在一定點(diǎn)Q,使得為定值?若存在,求出定點(diǎn)Q和定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱錐中,平面,,分別為線段上的點(diǎn),且

I)證明:平面;

II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空氣質(zhì)量AQI指數(shù)是反映空氣質(zhì)量狀況指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,其對應(yīng)關(guān)系如表:

AQI指數(shù)值

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

如圖所示的是某市111日至20AQI指數(shù)變化的折線圖:

下列說法不正確的是(

A.天中空氣質(zhì)量為輕度污染的天數(shù)占

B.天中空氣質(zhì)量為優(yōu)和良的天數(shù)為

C.天中AQI指數(shù)值的中位數(shù)略低于

D.總體來說,該市11月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20201月,教育部《關(guān)于在部分高校開展基礎(chǔ)學(xué)科招生改革試點(diǎn)工作的意見》印發(fā),自2020年起,在部分高校開展基礎(chǔ)學(xué)科招生改革試點(diǎn)(也稱強(qiáng)基計(jì)劃.強(qiáng)基計(jì)劃聚焦高端芯片與軟件智能科技新材料先進(jìn)制造和國家安全等關(guān)鍵領(lǐng)域以及國家人才緊缺的人文社會科學(xué)領(lǐng)域,選拔培養(yǎng)有志于服務(wù)國家重大戰(zhàn)略需求且綜合素質(zhì)優(yōu)秀或基礎(chǔ)學(xué)科拔尖的學(xué)生.新材料產(chǎn)業(yè)是重要的戰(zhàn)略性新興產(chǎn)業(yè),下圖是我國2011-2019年中國新材料產(chǎn)業(yè)市場規(guī)模及增長趨勢圖.其中柱狀圖表示新材料產(chǎn)業(yè)市場規(guī)模(單位:萬億元),折線圖表示新材料產(chǎn)業(yè)市場規(guī)模年增長率(.

1)求2015年至2019年這5年的新材料產(chǎn)業(yè)市場規(guī)模的平均數(shù);

2)從2012年至2019年中隨機(jī)挑選一年,求該年新材料產(chǎn)業(yè)市場規(guī)模較上一年的年增加量不少于6000億元的概率;

3)由圖判斷,從哪年開始連續(xù)三年的新材料產(chǎn)業(yè)市場規(guī)模年增長率的方差最大.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=sin 3x-cos 3x+1的圖象向左平移個(gè)單位長度,得到函數(shù)g(x)的圖象,給出下列關(guān)于g(x)的結(jié)論:

①它的圖象關(guān)于直線x=對稱;

②它的最小正周期為;

③它的圖象關(guān)于點(diǎn)(,1)對稱;

④它在[]上單調(diào)遞增.

其中所有正確結(jié)論的編號是(

A.①②B.②③C.①②④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了了解高一年級學(xué)生學(xué)習(xí)數(shù)學(xué)的狀態(tài),從期中考試成績中隨機(jī)抽取50名學(xué)生的數(shù)學(xué)成績,按成績分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

(1)由頻率分布直方圖,估計(jì)這50名學(xué)生數(shù)學(xué)成績的中位數(shù)和平均數(shù)(保留到0.01);

(2)該校高一年級共有1000名學(xué)生,若本次考試成績90分以上(含90分)為優(yōu)秀等次,則根據(jù)頻率分布直方圖估計(jì)該校高一學(xué)生數(shù)學(xué)成績達(dá)到優(yōu)秀等次的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三國時(shí)代吳國數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實(shí)、黃實(shí),利用,化簡,得.設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案