【題目】某學(xué)校為了了解高一年級(jí)學(xué)生學(xué)習(xí)數(shù)學(xué)的狀態(tài),從期中考試成績(jī)中隨機(jī)抽取50名學(xué)生的數(shù)學(xué)成績(jī),按成績(jī)分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

(1)由頻率分布直方圖,估計(jì)這50名學(xué)生數(shù)學(xué)成績(jī)的中位數(shù)和平均數(shù)(保留到0.01);

(2)該校高一年級(jí)共有1000名學(xué)生,若本次考試成績(jī)90分以上(含90分)為優(yōu)秀等次,則根據(jù)頻率分布直方圖估計(jì)該校高一學(xué)生數(shù)學(xué)成績(jī)達(dá)到優(yōu)秀等次的人數(shù).

【答案】(1)中位數(shù)為,平均數(shù)為 2

【解析】

(1)設(shè)這50名學(xué)生數(shù)學(xué)成績(jī)的中位數(shù)和平均數(shù)分別為,因?yàn)榍?/span>2組的頻率之和為,因?yàn)榍?/span>3組的頻率之和為,所以,求出即可求得答案;

(2)因?yàn)闃颖局?/span>90分及以上的頻率為,所以該校高一年級(jí)1000名學(xué)生中,根據(jù)頻率分布直方圖,即可估計(jì)該校高一學(xué)生數(shù)學(xué)成績(jī)達(dá)到人數(shù).

優(yōu)秀等次的人數(shù)

(1)設(shè)這50名學(xué)生數(shù)學(xué)成績(jī)的中位數(shù)和平均數(shù)分別為

因?yàn)榍?/span>2組的頻率之和為,因?yàn)榍?/span>3組的頻率之和為,所以,

,得.

所以,這50名學(xué)生數(shù)學(xué)成績(jī)的中位數(shù)和平均數(shù)分別為,

(2)因?yàn)闃颖局?/span>90分及以上的頻率為,

所以該校高一年級(jí)1000名學(xué)生中,根據(jù)頻率分布直方圖估計(jì)該校高一學(xué)生數(shù)學(xué)成績(jī)達(dá)到

優(yōu)秀等次的人數(shù)為人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐中,底面ABCD是梯形,且,,,,,,AD的中點(diǎn)為E,則四棱錐外接球的表面積為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐ABCD中,平面ABC⊥平面BCD,BACBCD均為等腰直角三角形,且∠BAC=BCD=90°,BC=2,點(diǎn)P是線段AB上的動(dòng)點(diǎn),若線段CD上存在點(diǎn)Q,使得異面直線PQAC30°的角,則線段PA長(zhǎng)的取值范圍是(

A.0,B.[0,]C.,D.,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若函數(shù),試討論的單調(diào)性;

2)若,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),隨著網(wǎng)絡(luò)的普及,數(shù)碼產(chǎn)品早已走進(jìn)千家萬(wàn)戶的生活,為了節(jié)約資源,促進(jìn)資源循環(huán)利用,折舊產(chǎn)品回收行業(yè)得到迅猛發(fā)展,電腦使用時(shí)間越長(zhǎng),回收價(jià)值越低,某二手電腦交易市場(chǎng)對(duì)2018年回收的折舊電腦交易前使用的時(shí)間進(jìn)行了統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,在如圖對(duì)時(shí)間使用的分組中,將使用時(shí)間落入各組的頻率視為概率.

(1)若在該市場(chǎng)隨機(jī)選取3個(gè)2018年成交的二手電腦,求至少有2個(gè)使用時(shí)間在上的概率;

(2)根據(jù)電腦交易市場(chǎng)往年的數(shù)據(jù),得到如圖所示的散點(diǎn)圖,其中(單位:年)表示折舊電腦的使用時(shí)間,(單位:百元)表示相應(yīng)的折舊電腦的平均交易價(jià)格.

(。┯缮Ⅻc(diǎn)圖判斷,可采用作為該交易市場(chǎng)折舊電腦平均交易價(jià)格與使用年限的回歸方程,若,,選用如下參考數(shù)據(jù),求關(guān)于的回歸方程.

5.5

8.5

1.9

301.4

79.75

385

(ⅱ)根據(jù)回歸方程和相關(guān)數(shù)據(jù),并用各時(shí)間組的區(qū)間中點(diǎn)值代表該組的值,估算該交易市場(chǎng)收購(gòu)1000臺(tái)折舊電腦所需的費(fèi)用

附:參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.參考數(shù)據(jù):,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),下述四個(gè)結(jié)論:

是偶函數(shù);

的最小正周期為;

的最小值為0;

上有3個(gè)零點(diǎn)

其中所有正確結(jié)論的編號(hào)是(

A.①②B.①②③C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,圓,動(dòng)圓與圓外切并與圓內(nèi)切,圓心的軌跡為曲線.

1)求的方程;

2)若直線與曲線交于兩點(diǎn),問(wèn)是否在軸上存在一點(diǎn),使得當(dāng)變動(dòng)時(shí)總有?若存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)為曲線上的動(dòng)點(diǎn),點(diǎn)在線段上,且滿足,求點(diǎn)的軌跡的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)在曲線上,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ln (x+1)-x,a∈R.

(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案