【題目】為更好地落實農(nóng)民工工資保證金制度,南方某市勞動保障部門調(diào)查了年下半年該市名農(nóng)民工(其中技術(shù)工、非技術(shù)工各名)的月工資,得到這名農(nóng)民工月工資的中位數(shù)為百元(假設(shè)這名農(nóng)民工的月工資均在(百元)內(nèi))且月工資收入在(百元)內(nèi)的人數(shù)為,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:

(Ⅰ)求,的值;

(Ⅱ)已知這名農(nóng)民工中月工資高于平均數(shù)的技術(shù)工有名,非技術(shù)工有名,則能否在犯錯誤的概率不超過的前提下認為是不是技術(shù)工與月工資是否高于平均數(shù)有關(guān)系?

參考公式及數(shù)據(jù):,其中

【答案】(Ⅰ),;(Ⅱ)不能在犯錯誤的概率不超過的前提下,認為是不是技術(shù)工與月工資是否高于平均數(shù)有關(guān)

【解析】

(Ⅰ)根據(jù)頻數(shù)計算出月工資收入在(百元)內(nèi)的頻率,利用頻率總和為和頻率分布直方圖估計中位數(shù)的方法可構(gòu)造出關(guān)于的方程組,解方程組求得結(jié)果;(Ⅱ)根據(jù)題意得到列聯(lián)表,從而計算出,從而得到結(jié)論.

(Ⅰ)月工資收入在(百元)內(nèi)的人數(shù)為

月工資收入在(百元)內(nèi)的頻率為:;

由頻率分布直方圖得:

化簡得:……①

由中位數(shù)可得:

化簡得:……②

由①②解得:,

(Ⅱ)根據(jù)題意得到列聯(lián)表:

技術(shù)工

非技術(shù)工

總計

月工資不高于平均數(shù)

月工資高于平均數(shù)

總計

不能在犯錯誤的概率不超過的前提下,認為是不是技術(shù)工與月工資是否高于平均數(shù)有關(guān)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)高三年級有學(xué)生500人,其中男生300人,女生200人。為了研究學(xué)生的數(shù)學(xué)成績是否與性別有關(guān),采用分層抽樣的方法,從中抽取了100名學(xué)生,統(tǒng)計了他們期中考試的數(shù)學(xué)分數(shù),然后按照性別分為男、女兩組,再將兩組的分數(shù)分成5組: 分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖。

(I)從樣本分數(shù)小于110分的學(xué)生中隨機抽取2人,求兩人恰為一男一女的概率;

(II)若規(guī)定分數(shù)不小于130分的學(xué)生為“數(shù)學(xué)尖子生”,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認為“數(shù)學(xué)尖子生與性別有關(guān)”?

附表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是邊長為3的正方形,平面,,,BE與平面所成角為

(Ⅰ)求證:平面 ;

(Ⅱ)求二面角的余弦值;

(Ⅲ)設(shè)點M在線段BD上,且平面BEF,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)上有三個零點,求實數(shù)的取值范圍;

(2)設(shè)函數(shù)為自然對數(shù)的底數(shù)),證明:對任意的,都有恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的左右焦點分別為, ,離心率為,點在橢圓上, , ,過與坐標軸不垂直的直線與橢圓交于, 兩點.

(Ⅰ)求橢圓的方程;

(Ⅱ)若, 的中點為,在線段上是否存在點,使得?若存在,求實數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201888日是我國第十個全民健身日,其主題是:新時代全民健身動起來.某市為了解全民健身情況,隨機從某小區(qū)居民中抽取了40人,將他們的年齡分成7段:,,,,,,后得到年齡如圖所示的頻率分布直方圖.

1)試求這40人年齡的眾數(shù)、中位數(shù)的估計值;

2)(i)若從樣本中年齡在的居民中任取2人贈送健身卡,求這2人中至少有1人年齡低于60歲的概率;

ii)己知該小區(qū)年齡在內(nèi)的總?cè)藬?shù)為1200,若18歲以上(含18歲)為成年人,試估計該小區(qū)年齡不超過80歲的成年人人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為等差數(shù)列,且)求數(shù)列的通項公式;()記的前項和為,若成等比數(shù)列,求正整數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l的方程為yx2,又直線l過橢圓Cab0)的右焦點,且橢圓的離心率為

)求橢圓C的方程;

)過點D0,1)的直線與橢圓C交于點A,B,求△AOB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四面體ABCD中,O、E分別是BD、BC的中點,,.

(1)求證:平面BCD;

(2)求異面直線AB與CD所成角的余弦值;

(3)求點E到平面ACD的距離。

查看答案和解析>>

同步練習(xí)冊答案