在△ABC中,分別根據(jù)下列條件解三角形,其中有兩解的是


  1. A.
    a=7,b=14,B=30°
  2. B.
    a=30,b=40,C=27°
  3. C.
    a=3,b=4,c=6
  4. D.
    a=6,b=4,S=8(其中S表示△ABC的面積)
D
分析:根據(jù)三角形的面積公式求得sinC的值,根據(jù)正弦函數(shù)的性質(zhì)可知C在(0,π)上有兩個解,答案可得.
解答:D項(xiàng)中S=absinC=12sinc=8
∴sinC=
C在(0,π)上有兩個解,
故答案選D
點(diǎn)評:本題主要考查了解三角形問題.屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A、∠B、∠C所對的邊分別為a、b、c,若A=60°,b、c分別是方程x2-7x+11=0的兩個根,則a等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C的對邊分別為a、b、c(b≠1),且
sinB
sinA
,
C
A
都是方程log
b
x=logb(4x-4)
的根,求角A、B、C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四種說法:①命題“?α∈R,sin3α=sin2α”的否定是假命題;②在△ABC中,角A,B,C所對的邊分別為a,b,c,若a=1,b=
2
A=
π
6
B=
π
4
;③設(shè)二次函數(shù)f(x)=x2+ax+a,則“0<a<3-2
2
”是“方程f(x)-x=0的兩根x1和x2滿足0<x1<x2<1”的充分必要條件.④過點(diǎn)(
1
2
,1)且與函數(shù)y=
1
x
的圖象相切的直線方程是4x+y-3=0.其中所有正確說法的序號是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且a,b是方程x2-2
3
x+2=0的兩根,2cos(A+B)=1,則△ABC的面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對邊分別為a,b,c,若關(guān)于x的方程x2-2xsin
C
2
+sin2C=0
有等根
(1)求角C;
(2)若a2+2b2=c2,求
bsinA
c

查看答案和解析>>

同步練習(xí)冊答案