7.方程組$\left\{\begin{array}{l}x+y=3\\ x-y=1\end{array}\right.$的解集為(  )
A.{x=2,y=1}B.$\left\{{\left\{\begin{array}{l}x=2\\ y=1\end{array}\right.}\right\}$C.{2,1}D.{(2,1)}

分析 利用“消元法”即可得出.

解答 解:$\left\{\begin{array}{l}{x+y=3}&{①}\\{x-y=1}&{②}\end{array}\right.$,
①+②可得:2x=4,解得x=2,把x=2代入①可得2+y=3,解得y=1.
∴方程組$\left\{\begin{array}{l}x+y=3\\ x-y=1\end{array}\right.$的解集為{(2,1)},
故選:D.

點(diǎn)評 本題考查了方程組的解法、“消元法”,考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖所示,在△ABC中,∠CAB=90°,AD⊥BC于D,BE是∠ABC的平分線,交AD于F,已知DF=$\sqrt{2}$,AF=$\sqrt{5}$,EC=2$\sqrt{5}$,則AE=2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=|x-2|-|x+1|.
(1)解不等式:f(x)≥2;
(2)若?x0∈R,使得f(x0)≥m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.一個(gè)半徑為1的扇形OAB,其弦AB的長為d,面積為t,則函數(shù)d=f (t ) 的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在棱長為1的正方體ABCD-A1B1C1D1中,O是正方體中心,N是棱A1B1上一點(diǎn),P為正方體的表面動點(diǎn),若滿足OP⊥BN的P點(diǎn)軌跡為曲線E,則當(dāng)N在棱A1B1上運(yùn)動時(shí),曲線E周長的取值范圍是$[{4,2+2\sqrt{2}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=$\sqrt{{x}^{2}+9}$的值域?yàn)椋ā 。?table class="qanwser">A.RB.[3,+∞)C.[0,+∞)D.[9,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,矩形ABEF所在的平面與等邊△ABC所在的平面垂直,AB=2,AF=1,O為AB的中點(diǎn).
(1)求證:OE⊥FC;
(2)求二面角F-CE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.圓心在拋物線y2=2x(y≥0)上,經(jīng)過點(diǎn)(2,0)且面積最小的圓為⊙C,直線y=kx+2與⊙C相交于A,B兩點(diǎn),當(dāng)弦長|AB|取得最小值時(shí)k=$\frac{2+\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進(jìn)行調(diào)查,隨機(jī)抽調(diào)了50人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如下表:
年齡[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
頻數(shù)510151055
支持“生育二胎”4512821
(Ⅰ)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表;
年齡不低于45歲的人年齡低于45歲的人合計(jì)
支持“生育二胎”a=3c=2932
不支持“生育二胎”b=7d=1118
合計(jì)1040n=50
(Ⅱ)判斷是否有99%的把握認(rèn)為以45歲為分界點(diǎn)對“生育二胎放開”政策的支持度有差異.
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
附表:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步練習(xí)冊答案