分析 先x=1,求出n的值,再利用二項(xiàng)式展開式的通項(xiàng)公式求出常數(shù)項(xiàng).
解答 解:令x=1,根據(jù)題意有${({1-\frac{1}{2}})^n}=\frac{1}{64}$,
解得n=6;
(${\root{3}{x}$-$\frac{1}{{2\root{3}{x}}}$)6展開式的通項(xiàng)公式為:
${T_{r+1}}=C_6^r{({\root{3}{x}})^{6-r}}{({-\frac{1}{{2\root{3}{x}}}})^r}={({-\frac{1}{2}})^r}C_6^r{x^{\frac{6-2r}{3}}}$,
令$\frac{6-2r}{3}=0$,解得r=3;
所以,展開式的常數(shù)項(xiàng)為:
${T_4}={({-\frac{1}{2}})^3}C_6^3=-\frac{5}{2}$.
故答案為:-$\frac{5}{2}$.
點(diǎn)評(píng) 本題考查了用賦值法求二項(xiàng)式次數(shù)的應(yīng)用問題,也考查了二項(xiàng)式展開式的通項(xiàng)公式的應(yīng)用問題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\sqrt{2}$ | C. | $\frac{{2\sqrt{3}}}{3}$ | D. | $\sqrt{5}+1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b>c>a | B. | c>a>b | C. | a>b>c | D. | a>c>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | $\frac{1}{4}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{{{(n+1)}^2}}}{4}$ | B. | $\frac{n(n+3)}{4}$ | C. | $\frac{n(n+1)}{2}$ | D. | $\frac{{{n^2}+1}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|0≤x≤2} | B. | {x|0<x<2} | C. | {x|-1≤x<0} | D. | {x|-1<x≤0} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com