已知直二面角α-l-β,點(diǎn)A∈α,AC⊥l,C為垂足,B∈β,BD⊥l,D為垂足.若AB=2,AC=BD=1,則D到平面ABC的距離等于(  )
A.B.C.D.1
C
=++,
∴||2=||2+||2+||2,
∴||2=2.
在Rt△BDC中,BC=.
∵平面ABC⊥平面BCD,過(guò)D作DH⊥BC于H,
則DH⊥平面ABC,
∴DH的長(zhǎng)即為D到平面ABC的距離,
∴DH===,故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,三棱柱中,側(cè)棱平面,為等腰直角三角形,,且分別是的中點(diǎn).

(1)求證:平面;
(2)求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐S-ABCD中,ABCD為矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,SD=AD,E為CD上一點(diǎn),且CE=3DE.

(1)求證:AE⊥平面SBD.
(2)M,N分別為線段SB,CD上的點(diǎn),是否存在M,N,使MN⊥CD且MN⊥SB,若存在,確定M,N的位置;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,點(diǎn)D是BC的中點(diǎn).

(1)求異面直線A1B與C1D所成角的余弦值;
(2)求平面ADC1與平面ABA1所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,正四面體的頂點(diǎn)分別在兩兩垂直的三條射線上,則在下列命題中,錯(cuò)誤的為(   )
A.是正三棱錐
B.直線平面
C.直線所成的角是
D.二面角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知正四棱錐P-ABCD的所有棱長(zhǎng)都是2,底面正方形兩條對(duì)角線相交于O點(diǎn),M是側(cè)棱PC的中點(diǎn).

(1)求此正四棱錐的體積.
(2)求直線BM與側(cè)面PAB所成角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知非零向量a,b及平面α,若向量a是平面α的法向量,則a·b=0是向量b所在直線平行于平面α或在平面α內(nèi)的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

由空間向量,構(gòu)成的向量集合,則向量的模的最小值為              .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,在空間直角坐標(biāo)系中有直三棱柱ABCA1B1C1CACC1=2CB,則直線BC1與直線AB1夾角的余弦值為    (  ).
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案