8.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x},x≥0}\\{{x}^{2},x<0}\end{array}\right.$,若方程f(f(x))=a(a>0)恰有兩個(gè)不相等的實(shí)根x1,x2,則e${\;}^{{x}_{1}}$•e${\;}^{{x}_{2}}$的最大值為( 。
A.$\frac{1}{{e}^{2}}$B.2(ln2-1)C.$\frac{4}{{e}^{2}}$D.ln2-1

分析 求出f(f(x))的解析式,根據(jù)f(f(x))的函數(shù)圖象判斷x1,x2的范圍和兩根的關(guān)系,構(gòu)造函數(shù)h(x1)=e${\;}^{{x}_{1}}$•e${\;}^{{x}_{2}}$,求出h(x1)的最大值即可.

解答 解:令g(x)=f(f(x))=$\left\{\begin{array}{l}{{e}^{{e}^{x}},x≥0}\\{{e}^{{x}^{2}},x<0}\end{array}\right.$,
∵y=f(x)在(-∞,0)上單調(diào)遞減,在[0,+∞)上單調(diào)遞增,
∴g(x)=f(f(x))在(-∞,0)上單調(diào)遞減,在[0,+∞)上單調(diào)遞增.
做出g(x)=f(f(x))的函數(shù)圖象如圖所示:

∵方程f(f(x))=a(a>0)恰有兩個(gè)不相等的實(shí)根x1,x2
不妨設(shè)x1<x2,則x1≤-1,x2≥0,且f(x1)=f(x2),即x12=e${\;}^{{x}_{2}}$.
∴e${\;}^{{x}_{1}}$•e${\;}^{{x}_{2}}$=e${\;}^{{x}_{1}}$•x12,
令h(x1)=e${\;}^{{x}_{1}}$•x12,則h′(x1)=e${\;}^{{x}_{1}}$(x12+2x1)=e${\;}^{{x}_{1}}$•x1•(x1+2),
∴當(dāng)x1<-2時(shí),h′(x1)>0,當(dāng)-2<x1<-1時(shí),h′(x1)<0,
∴h(x1)在(-∞,-2)上單調(diào)遞增,在(-2,-1)上單調(diào)遞減,
∴當(dāng)x1=-2時(shí),h(x1)取得最大值h(-2)=$\frac{4}{{e}^{2}}$.
故選C.

點(diǎn)評(píng) 本題考查了根的個(gè)數(shù)與函數(shù)圖象的關(guān)系,函數(shù)單調(diào)性判斷與函數(shù)最值的計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知O為坐標(biāo)原點(diǎn),F(xiàn)1、F2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的左右焦點(diǎn),A為C的左頂點(diǎn),P為C上一點(diǎn),且PF1⊥x軸,過點(diǎn)A的直線l與線段PF1交于點(diǎn)M,與y軸交于點(diǎn)E,若直線F2M與y軸交點(diǎn)為N,OE=2ON,則C的離心率為( 。
A.$\frac{1}{3}$B.2C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={x|x2+5x>0},B={x|-3<x<4},則A∩B等于(  )
A.(-5,0)B.(-3,0)C.(0,4)D.(-5,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知F1(-c,0)、F2(c、0)分別是橢圓G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{b^2}$=1(0<b<a<3)的左、右焦點(diǎn),點(diǎn)P(2,$\sqrt{2}$)是橢圓G上一點(diǎn),且|PF1|-|PF2|=a.
(1)求橢圓G的方程;
(2)設(shè)直線l與橢圓G相交于A、B兩點(diǎn),若$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,其中O為坐標(biāo)原點(diǎn),判斷O到直線l的距離是否為定值?若是,求出該定值,若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果是6,則判斷框內(nèi)m的取值范圍是( 。
A.(30,42]B.(20,30)C.(20,30]D.(20,42)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在三棱錐C-PAB中,AB⊥BC,PB⊥BC,PA=PB=5,AB=6,BC=4,點(diǎn)M是PC的中點(diǎn),點(diǎn)N在線段AB上,且MN⊥AB.
(1)求AN的長(zhǎng);
(2)求銳二面角P-NC-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖是一個(gè)幾何體的三視圖,其中正視圖和側(cè)視圖是腰長(zhǎng)為1的兩個(gè)全等的等腰直角三角形,則該多面體的各條棱中最長(zhǎng)棱的長(zhǎng)度為( 。
A.$\sqrt{7}$B.$\sqrt{5}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)$f(x)=\left\{\begin{array}{l}{e^x}+a,x≤0\\{x^2}+1+a.x>0\end{array}\right.$,a為實(shí)數(shù),若f(2-x)≥f(x),則x的取值范圍是( 。
A.(-∞,1]B.(-∞,-1]C.[-1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在平面直角坐標(biāo)系xOy中,已知拋物線y2=4x上一點(diǎn)P到焦點(diǎn)的距離為3,則點(diǎn)P的橫坐標(biāo)是2.

查看答案和解析>>

同步練習(xí)冊(cè)答案