5.已知頂點在單位圓上的△ABC中,角A、B、C所對的邊分別為a、b、c,且b2+c2=a2+bc.
(1)求角A的大小;
(2)若b2+c2=4,求△ABC的面積.

分析 (1)利用余弦定理以及特殊角的三角函數(shù)值,即可求出角A的值;
(2)由正弦定理求出a的值,再根據(jù)題意求出bc的值,從而求出三角形的面積.

解答 解:(1)△ABC中,b2+c2=a2+bc,
∴b2+c2-a2=bc,…(2分)
∴cosA=$\frac{^{2}{+c}^{2}{-a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$;…(4分)
又∵0<A<π,
∴A=$\frac{π}{3}$; …(6分)
(2)∵$\frac{a}{sinA}$=2R,R為△ABC外接圓的半徑,
∴a=2RsinA=2×1×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$;…(8分)
又∵b2+c2=a2+bc且b2+c2=4,
∴4=${(\sqrt{3})}^{2}$+bc,
解得bc=1;     …(10分)
∴S△ABC=$\frac{1}{2}bcsinA$=$\frac{1}{2}×1×\frac{{\sqrt{3}}}{2}$=$\frac{{\sqrt{3}}}{4}$.…(12分)

點評 本題考查了正弦、余弦定理,以及特殊角的三角函數(shù)值應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.已知向量$\overrightarrow{a}$=(2,-1,2),$\overrightarrow$=(-4,2,m),且$\overrightarrow{a}$∥$\overrightarrow$,則m的值為-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,已知P(x0,y0)是橢圓C:$\frac{x^2}{4}+{y^2}$=1上一點,過原點的斜率分別為k1,k2的兩條直線與圓(x-x02+(y-y02=$\frac{4}{5}$均相切,且交橢圓于A,B兩點.
(1)求證:k1k2=-$\frac{1}{4}$;
(2)求|OA|•|OB|得最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在△ABC中,角A,B,C的對邊分別是a,b,c,若a.b.c成等比數(shù)列,且2c-4a=0,則cosB=( 。
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知a=log0.53,b=20.5,c=0.50.3,則a,b,c的大小關系是a<c<b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.一個空間幾何體的三視圖如圖所示,則該幾何體的體積為54

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)y=f(x)的圖象是如圖的曲線ABC,其中A(1,3),B(2,1),C(3,2),則f[f(3)]的值為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.將函數(shù)$f(x)=cos(2x-\frac{π}{6})$的圖象向右平移$\frac{π}{12}$個單位長度后,所得圖象的一條對稱軸方程可以是( 。
A.$x=\frac{π}{6}$B.$x=\frac{π}{4}$C.$x=\frac{π}{3}$D.$x=\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知點P($\frac{1}{2},8$)在冪函數(shù)f(x)的圖象上,則f(2)=$\frac{1}{8}$.

查看答案和解析>>

同步練習冊答案