設f(x)是定義在區(qū)間(-∞,+∞)上以2為周期的函數,對k∈Z,用Ik表示區(qū)間(2k-1,2k+1],已知當x∈I時,f(x)=x2.
(1)求f(x)在Ik上的解析表達式;
(2)對自然數k,求集合Mk={a|使方程f(x)=ax在Ik上有兩個不等的實根}
【答案】
分析:(1)利用2為周期2k也是周期可得f(x)=f(x-2k)=(x-2k)
2即為所求.
(2)轉化為x
2-(4k+a)+4k
2=0在區(qū)間I
k上恰有兩個不相等的實根,再求有兩個不相等的實根成立的條件即可.
解答:解:(1)∵f(x)是以2為周期的函數,
∴當k∈Z時,2k也是f(x)的周期.
又∵當x∈I
k時,(x-2k)∈I
,
∴f(x)=f(x-2k)=(x-2k)
2.
即對k∈Z,當x∈I
k時,f(x)=(x-2k)
2.
(2)當k∈Z且x∈I
k時,
利用(1)的結論可得方程(x-2k)
2=ax,整理得:x
2-(4k+a)+4k
2=0.
它的判別式是△=(4k+a)
2-16k
2=a(a+8k).
上述方程在區(qū)間I
k上恰有兩個不相等的實根的充要條件是a滿足
化簡得
由(1)知a>0,或a<-8k.
當a>0時:因2+a>2-a,故從(2),(3)
可得
,即
當a<-8k時:2+a<2-8k<0,
易知
無解,
綜上所述,a應滿足
故所求集合
點評:本題借助于函數的周期性對函數解析式的求法和根的存在性'根的個數的判斷的綜合考查,是道中檔題.