8.橢圓x2+2y2=4的離心率是$\frac{\sqrt{2}}{2}$.

分析 根據(jù)題意,將橢圓的方程變形為標(biāo)準(zhǔn)方程的形式,分析可得a、b的值,由橢圓的幾何性質(zhì)可得c的值,由橢圓的離心率公式計算可得答案.

解答 解:根據(jù)題意,橢圓的方程為x2+2y2=4,則其標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1,
其中a=$\sqrt{4}$=2,b=$\sqrt{2}$,
則c=$\sqrt{{a}^{2}-^{2}}$=$\sqrt{2}$,
其離心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$;
故答案為:$\frac{\sqrt{2}}{2}$.

點評 本題考查橢圓的幾何性質(zhì),注意先將橢圓的方程變形為標(biāo)準(zhǔn)方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知集合A={x|a-2<x<a+2},B={x|x2-(a+2)x+2a=0},a∈R.
(Ⅰ)若a=0,求A∪B;
(Ⅱ)若(∁RA)∩B≠∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖所示,F(xiàn)1和F2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩個焦點,A和B是以O(shè)為圓心,以|OF1|為半徑的圓與該雙曲線左支的兩個交點,且△F2AB是等邊三角形,則雙曲線的離心率為(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的前n項和為Sn,若an=-3Sn+4,bn=-log2an+1
(1)求數(shù)列{an}的通項公式與數(shù)列{bn}的通項公式;
(2)令cn=$\frac{_{n}}{{2}^{n+1}}$,其中n∈N*,記數(shù)列{cn}的前n項和為Tn,求Tn+$\frac{n+2}{{2}^{n}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知命題p:?x0>0,x02-x0-2=0,則¬p為( 。
A.?x0≤0,x02-x0-2=0B.?x0>0,x02-x0-2=0
C.?x≤0,x2-x-2≠0D.?x>0,x2-x-2≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{1}{2}$ax2+2x-lnx.
(1)當(dāng)a=0時,求函數(shù)的極值;
(2)若f(x)在[$\frac{1}{3}$,2]上是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)集合M={x|-1≤x≤2},N={x|log2x>0},則M∪N=(  )
A.[-1,+∞)B.(1,+∞)C.(-1,2)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù) f(x)=x3+ax2-a2x+5(a>0).
(1)當(dāng)函數(shù)f(x)有兩個零點時,求a的值;
(2)若a∈[3,6],當(dāng)x∈[-4,4]時,求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=\frac{mx}{{{x^2}+n}}$(m,n∈R)在x=1處取到極值2.
(Ⅰ)求f(x)的解析式;
(Ⅱ)設(shè)函數(shù)$g(x)=lnx+\frac{a}{x}$,若對任意的x1∈[-1,1],總存在x2∈[1,e](e為自然對數(shù)的底數(shù)),使得$g({x_2})≤f({x_1})+\frac{7}{2}$,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案