16.函數(shù)f(x)=(x-3)ex在(0,+∞)上的零點(diǎn)個(gè)數(shù)是1.

分析 求出原函數(shù)的導(dǎo)函數(shù),得到導(dǎo)函數(shù)的零點(diǎn),進(jìn)一步求得極值點(diǎn),由極小值小于0,f(0)<0,且當(dāng)x→+∞時(shí),f(x)→+∞可得函數(shù)f(x)=(x-3)ex在(0,+∞)上的零點(diǎn)個(gè)數(shù).

解答 解:由f(x)=(x-3)ex,得f′(x)=(x-2)ex,
由f′(x)=0,得x=2,
∴當(dāng)x∈(0,2)時(shí),f′(x)<0,當(dāng)x∈(2,+∞)時(shí),f′(x)>0,
∴f(x)在(0,2)上為減函數(shù),在(2,+∞)上為增函數(shù),
則f(x)在(0,+∞)上的極小值也就是最小值為f(2)=-e2<0,而f(0)=-3<0,且當(dāng)x→+∞時(shí),f(x)→+∞,
∴函數(shù)f(x)=(x-3)ex在(0,+∞)上的零點(diǎn)個(gè)數(shù)是1.
故答案為:1.

點(diǎn)評(píng) 本題考查函數(shù)零點(diǎn)的判定,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知數(shù)列{an}中,a1=5,a2=2,an=2an-1+3an-2,(n≥3)
(Ⅰ)證明數(shù)列{an-3an-1}成等比數(shù)列,并求數(shù){an}列的通項(xiàng)公式an;
(Ⅱ)若數(shù)列bn=$\frac{2n-1}{7}$(an+1+an),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{1}{2}$,過(guò)F1的直線l與橢圓C交于M,N兩點(diǎn),且△MNF2的周長(zhǎng)為8.
(1)求橢圓C的方程;
(2)若直線y=kx+b與橢圓C分別交于A,B兩點(diǎn),且OA⊥OB,試問(wèn)點(diǎn)O到直線AB的距離是否為定值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.甲、乙兩個(gè)籃球運(yùn)動(dòng)員互不影響地在同一位置投球,命中率分別為m與p,且乙投球3次均未命中的概率為$\frac{1}{64}$,甲投球未命中的概率恰是乙投球未命中的概率的2倍.
(Ⅰ)求乙投球的命中率p;
(Ⅱ)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx等于( 。
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知f(x)=(kx+b)•ex,且曲線y=f(x)在x=1處的切線方程為y=e(x-1).
(Ⅰ)求k與b的值;
(Ⅱ)求${∫}_{0}^{1}$(x•ex)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.給出下列一段推理:若一條直線平行于平面,則這條直線平行于平面內(nèi)所有直線.已知直線a?平面α,直線b?平面α,且a∥α,所以a∥b.上述推理的結(jié)論不一定是正確的,其原因是( 。
A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.非以上錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)$f(x)=x{e^x}-\frac{m}{2}{x^2}-mx$,則函數(shù)f(x)在[1,2]上的最小值不可能為( 。
A.$e-\frac{3}{2}m$B.$-\frac{1}{2}m{ln^2}m$C.2e2-4mD.e2-2m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.${(x+\frac{1}{x}+2)^5}$的展開式中,x2的系數(shù)是120.

查看答案和解析>>

同步練習(xí)冊(cè)答案