【題目】如圖,在三棱錐V﹣ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC= ,O,M分別為AB,VA的中點(diǎn).
(1)求證:VB∥平面MOC;
(2)求證:平面MOC⊥平面VAB
(3)求三棱錐V﹣ABC的體積.

【答案】
(1)證明:∵O,M分別為AB,VA的中點(diǎn),

∴OM∥VB,

∵VB平面MOC,OM平面MOC,

∴VB∥平面MOC


(2)∵AC=BC,O為AB的中點(diǎn),

∴OC⊥AB,

∵平面VAB⊥平面ABC,OC平面ABC,

∴OC⊥平面VAB,

∵OC平面MOC,

∴平面MOC⊥平面VAB


(3)解:在等腰直角三角形ACB中,AC=BC= ,∴AB=2,OC=1,

∴S△VAB= ,

∵OC⊥平面VAB,

∴VC﹣VAB= S△VAB=

∴VV﹣ABC=VC﹣VAB=


【解析】(1)利用三角形的中位線得出OM∥VB,利用線面平行的判定定理證明VB∥平面MOC;(2)證明:OC⊥平面VAB,即可證明平面MOC⊥平面VAB(3)利用等體積法求三棱錐V﹣ABC的體積.
【考點(diǎn)精析】通過靈活運(yùn)用直線與平面平行的判定和平面與平面垂直的判定,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知sinα= ,且α∈( ,π).
(1)求tan(α+ )的值;
(2)若β∈(0, ),且cos(α﹣β)= ,求cosβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)不等式組 ,表示的平面區(qū)域?yàn)镈,若圓C:(x+1)2+(y+1)2=r2(r>0)經(jīng)過區(qū)域D上的點(diǎn),則r的取值范圍是(
A.[2 ,2 ]
B.(2 ,3 ]??
C.(3 ,2 ]
D.(0,2 )∪(2 ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分組的頻率分布直方圖如圖.

(1)求直方圖中x的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,[220,240),[240,260),[260,280),[280,300)的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在[220,240)的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將直線2x﹣y+λ=0沿x軸向左平移1個(gè)單位,所得直線與圓x2+y2+2x﹣4y=0相切,則實(shí)數(shù)λ的值為(
A.﹣3或7
B.﹣2或8
C.0或10
D.1或11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某畢業(yè)生參加人才招聘會(huì),分別向甲、乙、丙三個(gè)公司投遞了個(gè)人簡歷,假定該畢業(yè)生得到甲公司面試的概率為 ,得到乙公司和丙公司面試的概率均為p,且三個(gè)公司是否讓其面試是相互獨(dú)立的.記ξ為該畢業(yè)生得到面試的公司個(gè)數(shù),若P(ξ=0)=
(Ⅰ)求p的值:
(Ⅱ)求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線x2=4y,圓C:x2+(y﹣2)2=4,點(diǎn)M(x0 , y0),(x0>0,y0>4)為拋物線上的動(dòng)點(diǎn),過點(diǎn)M的圓C的兩切線,設(shè)其斜率分別為k1 , k2
(Ⅰ)求證:k1+k2= ,k1k2=
(Ⅱ)求過點(diǎn)M的圓的兩切線與x軸圍成的三角形面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某樂園按時(shí)段收費(fèi),收費(fèi)標(biāo)準(zhǔn)為:每玩一次不超過1小時(shí)收費(fèi)10元,超過1小時(shí)的部分每小時(shí)收費(fèi)8元(不足1小時(shí)的部分按1小時(shí)計(jì)算).現(xiàn)有甲、乙二人參與但都不超過4小時(shí),甲、乙二人在每個(gè)時(shí)段離場(chǎng)是等可能的.為吸引顧客,每個(gè)顧客可以參加一次抽獎(jiǎng)活動(dòng).
(1)用(10,10)表示甲乙玩都不超過1小時(shí)的付費(fèi)情況,求甲、乙二人付費(fèi)之和為44元的概率;
(2)抽獎(jiǎng)活動(dòng)的規(guī)則是:顧客通過操作按鍵使電腦自動(dòng)產(chǎn)生兩個(gè)[0,1]之間的均勻隨機(jī)數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎(jiǎng)”,則該顧客中獎(jiǎng);若電腦顯示“謝謝”,則不中獎(jiǎng),求顧客中獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠家具車間造A、B型兩類桌子,每張桌子需木工和漆工兩道工序完成.已知木工做一張A、B型桌子分別需要1小時(shí)和2小時(shí),漆工油漆一張A、B型桌子分別需要3小時(shí)和1小時(shí);又知木工、漆工每天工作分別不得超過8小時(shí)和9小時(shí),而工廠造一張A、B型桌子分別獲利潤2千元和3千元,試問工廠每天應(yīng)生產(chǎn)A、B型桌子各多少張,才能獲得利潤最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案